Text structuralization is one of the important fields of natural language processing (NLP) consists of information extraction (IE) and structure formalization. However, current studies of text structuralization suffer from a shortage of manually annotated high-quality datasets from different domains and languages, which require specialized professional knowledge. In addition, most IE methods are designed for a specific type of structured data, e.g., entities, relations, and events, making them hard to generalize to others. In this work, we propose a simple and efficient approach to instruct large language model (LLM) to extract a variety of structures from texts. More concretely, we add a prefix and a suffix instruction to indicate the desired IE task and structure type, respectively, before feeding the text into a LLM. Experiments on two LLMs show that this approach can enable language models to perform comparable with other state-of-the-art methods on datasets of a variety of languages and knowledge, and can generalize to other IE sub-tasks via changing the content of instruction. Another benefit of our approach is that it can help researchers to build datasets in low-source and domain-specific scenarios, e.g., fields in finance and law, with low cost.
The ability of knowledge graphs to represent complex relationships at scale has led to their adoption for various needs including knowledge representation, question-answering, and recommendation systems. Knowledge graphs are often incomplete in the information they represent, necessitating the need for knowledge graph completion tasks. Pre-trained and fine-tuned language models have shown promise in these tasks although these models ignore the intrinsic information encoded in the knowledge graph, namely the entity and relation types. In this work, we propose the Knowledge Graph Language Model (KGLM) architecture, where we introduce a new entity/relation embedding layer that learns to differentiate distinctive entity and relation types, therefore allowing the model to learn the structure of the knowledge graph. In this work, we show that further pre-training the language models with this additional embedding layer using the triples extracted from the knowledge graph, followed by the standard fine-tuning phase sets a new state-of-the-art performance for the link prediction task on the benchmark datasets.
We propose a new paradigm for universal information extraction (IE) that is compatible with any schema format and applicable to a list of IE tasks, such as named entity recognition, relation extraction, event extraction and sentiment analysis. Our approach converts the text-based IE tasks as the token-pair problem, which uniformly disassembles all extraction targets into joint span detection, classification and association problems with a unified extractive framework, namely UniEX. UniEX can synchronously encode schema-based prompt and textual information, and collaboratively learn the generalized knowledge from pre-defined information using the auto-encoder language models. We develop a traffine attention mechanism to integrate heterogeneous factors including tasks, labels and inside tokens, and obtain the extraction target via a scoring matrix. Experiment results show that UniEX can outperform generative universal IE models in terms of performance and inference-speed on $14$ benchmarks IE datasets with the supervised setting. The state-of-the-art performance in low-resource scenarios also verifies the transferability and effectiveness of UniEX.
Generalization beyond in-domain experience to out-of-distribution data is of paramount significance in the AI domain. Of late, state-of-the-art Visual Question Answering (VQA) models have shown impressive performance on in-domain data, partially due to the language priors bias which, however, hinders the generalization ability in practice. This paper attempts to provide new insights into the influence of language modality on VQA performance from an empirical study perspective. To achieve this, we conducted a series of experiments on six models. The results of these experiments revealed that, 1) apart from prior bias caused by question types, there is a notable influence of postfix-related bias in inducing biases, and 2) training VQA models with word-sequence-related variant questions demonstrated improved performance on the out-of-distribution benchmark, and the LXMERT even achieved a 10-point gain without adopting any debiasing methods. We delved into the underlying reasons behind these experimental results and put forward some simple proposals to reduce the models' dependency on language priors. The experimental results demonstrated the effectiveness of our proposed method in improving performance on the out-of-distribution benchmark, VQA-CPv2. We hope this study can inspire novel insights for future research on designing bias-reduction approaches.
Text editing or revision is an essential function of the human writing process. Understanding the capabilities of LLMs for making high-quality revisions and collaborating with human writers is a critical step toward building effective writing assistants. With the prior success of LLMs and instruction tuning, we leverage instruction-tuned LLMs for text revision to improve the quality of user-generated text and improve the efficiency of the process. We introduce CoEdIT, a state-of-the-art text editing model for writing assistance. CoEdIT takes instructions from the user specifying the attributes of the desired text, such as "Make the sentence simpler" or "Write it in a more neutral style," and outputs the edited text. We present a large language model fine-tuned on a diverse collection of task-specific instructions for text editing (a total of 82K instructions). Our model (1) achieves state-of-the-art performance on various text editing benchmarks, (2) is competitive with publicly available largest-sized LLMs trained on instructions while being $\sim$60x smaller, (3) is capable of generalizing to unseen edit instructions, and (4) exhibits compositional comprehension abilities to generalize to instructions containing different combinations of edit actions. Through extensive qualitative and quantitative analysis, we show that writers prefer the edits suggested by CoEdIT, relative to other state-of-the-art text editing models. Our code and dataset are publicly available.
Multi-object rearrangement is a crucial skill for service robots, and commonsense reasoning is frequently needed in this process. However, achieving commonsense arrangements requires knowledge about objects, which is hard to transfer to robots. Large language models (LLMs) are one potential source of this knowledge, but they do not naively capture information about plausible physical arrangements of the world. We propose LLM-GROP, which uses prompting to extract commonsense knowledge about semantically valid object configurations from an LLM and instantiates them with a task and motion planner in order to generalize to varying scene geometry. LLM-GROP allows us to go from natural-language commands to human-aligned object rearrangement in varied environments. Based on human evaluations, our approach achieves the highest rating while outperforming competitive baselines in terms of success rate while maintaining comparable cumulative action costs. Finally, we demonstrate a practical implementation of LLM-GROP on a mobile manipulator in real-world scenarios. Supplementary materials are available at: //sites.google.com/view/llm-grop
While natural language processing tools have been developed extensively for some of the world's languages, a significant portion of the world's over 7000 languages are still neglected. One reason for this is that evaluation datasets do not yet cover a wide range of languages, including low-resource and endangered ones. We aim to address this issue by creating a text classification dataset encompassing a large number of languages, many of which currently have little to no annotated data available. We leverage parallel translations of the Bible to construct such a dataset by first developing applicable topics and employing a crowdsourcing tool to collect annotated data. By annotating the English side of the data and projecting the labels onto other languages through aligned verses, we generate text classification datasets for more than 1500 languages. We extensively benchmark several existing multilingual language models using our dataset. To facilitate the advancement of research in this area, we will release our dataset and code.
Non-parallel text style transfer is an important task in natural language generation. However, previous studies concentrate on the token or sentence level, such as sentence sentiment and formality transfer, but neglect long style transfer at the discourse level. Long texts usually involve more complicated author linguistic preferences such as discourse structures than sentences. In this paper, we formulate the task of non-parallel story author-style transfer, which requires transferring an input story into a specified author style while maintaining source semantics. To tackle this problem, we propose a generation model, named StoryTrans, which leverages discourse representations to capture source content information and transfer them to target styles with learnable style embeddings. We use an additional training objective to disentangle stylistic features from the learned discourse representation to prevent the model from degenerating to an auto-encoder. Moreover, to enhance content preservation, we design a mask-and-fill framework to explicitly fuse style-specific keywords of source texts into generation. Furthermore, we constructed new datasets for this task in Chinese and English, respectively. Extensive experiments show that our model outperforms strong baselines in overall performance of style transfer and content preservation.
Despite the fact that large-scale Language Models (LLM) have achieved SOTA performances on a variety of NLP tasks, its performance on NER is still significantly below supervised baselines. This is due to the gap between the two tasks the NER and LLMs: the former is a sequence labeling task in nature while the latter is a text-generation model. In this paper, we propose GPT-NER to resolve this issue. GPT-NER bridges the gap by transforming the sequence labeling task to a generation task that can be easily adapted by LLMs e.g., the task of finding location entities in the input text "Columbus is a city" is transformed to generate the text sequence "@@Columbus## is a city", where special tokens @@## marks the entity to extract. To efficiently address the "hallucination" issue of LLMs, where LLMs have a strong inclination to over-confidently label NULL inputs as entities, we propose a self-verification strategy by prompting LLMs to ask itself whether the extracted entities belong to a labeled entity tag. We conduct experiments on five widely adopted NER datasets, and GPT-NER achieves comparable performances to fully supervised baselines, which is the first time as far as we are concerned. More importantly, we find that GPT-NER exhibits a greater ability in the low-resource and few-shot setups, when the amount of training data is extremely scarce, GPT-NER performs significantly better than supervised models. This demonstrates the capabilities of GPT-NER in real-world NER applications where the number of labeled examples is limited.
Diffusion models, which have emerged to become popular text-to-image generation models, can produce high-quality and content-rich images guided by textual prompts. However, there are limitations to semantic understanding and commonsense reasoning in existing models when the input prompts are concise narrative, resulting in low-quality image generation. To improve the capacities for narrative prompts, we propose a simple-yet-effective parameter-efficient fine-tuning approach called the Semantic Understanding and Reasoning adapter (SUR-adapter) for pre-trained diffusion models. To reach this goal, we first collect and annotate a new dataset SURD which consists of more than 57,000 semantically corrected multi-modal samples. Each sample contains a simple narrative prompt, a complex keyword-based prompt, and a high-quality image. Then, we align the semantic representation of narrative prompts to the complex prompts and transfer knowledge of large language models (LLMs) to our SUR-adapter via knowledge distillation so that it can acquire the powerful semantic understanding and reasoning capabilities to build a high-quality textual semantic representation for text-to-image generation. We conduct experiments by integrating multiple LLMs and popular pre-trained diffusion models to show the effectiveness of our approach in enabling diffusion models to understand and reason concise natural language without image quality degradation. Our approach can make text-to-image diffusion models easier to use with better user experience, which demonstrates our approach has the potential for further advancing the development of user-friendly text-to-image generation models by bridging the semantic gap between simple narrative prompts and complex keyword-based prompts. The code is released at //github.com/Qrange-group/SUR-adapter.
In this paper, we propose Latent Relation Language Models (LRLMs), a class of language models that parameterizes the joint distribution over the words in a document and the entities that occur therein via knowledge graph relations. This model has a number of attractive properties: it not only improves language modeling performance, but is also able to annotate the posterior probability of entity spans for a given text through relations. Experiments demonstrate empirical improvements over both a word-based baseline language model and a previous approach that incorporates knowledge graph information. Qualitative analysis further demonstrates the proposed model's ability to learn to predict appropriate relations in context.