In this work, we propose extropy measures based on density copula, distributional copula, and survival copula, and explore their properties. We study the effect of monotone transformations for the proposed measures and obtain bounds. We establish connections between cumulative copula extropy and three dependence measures: Spearman's rho, Kendall's tau, and Blest's measure of rank correlation. Finally, we propose estimators for the cumulative copula extropy and survival copula extropy with an illustration using real life datasets.
Motivated by the application of saddlepoint approximations to resampling-based statistical tests, we prove that a Lugananni-Rice style approximation for conditional tail probabilities of averages of conditionally independent random variables has vanishing relative error. We also provide a general condition on the existence and uniqueness of the solution to the corresponding saddlepoint equation. The results are valid under a broad class of distributions involving no restrictions on the smoothness of the distribution function. The derived saddlepoint approximation formula can be directly applied to resampling-based hypothesis tests, including bootstrap, sign-flipping and conditional randomization tests. Our results extend and connect several classical saddlepoint approximation results. On the way to proving our main results, we prove a new conditional Berry-Esseen inequality for the sum of conditionally independent random variables, which may be of independent interest.
The broad class of multivariate unified skew-normal (SUN) distributions has been recently shown to possess important conjugacy properties. When used as priors for the vector of parameters in general probit, tobit, and multinomial probit models, these distributions yield posteriors that still belong to the SUN family. Although such a core result has led to important advancements in Bayesian inference and computation, its applicability beyond likelihoods associated with fully-observed, discretized, or censored realizations from multivariate Gaussian models remains yet unexplored. This article covers such an important gap by proving that the wider family of multivariate unified skew-elliptical (SUE) distributions, which extends SUNs to more general perturbations of elliptical densities, guarantees conjugacy for broader classes of models, beyond those relying on fully-observed, discretized or censored Gaussians. Such a result leverages the closure under linear combinations, conditioning and marginalization of SUE to prove that this family is conjugate to the likelihood induced by general multivariate regression models for fully-observed, censored or dichotomized realizations from skew-elliptical distributions. This advancement enlarges the set of models that enable conjugate Bayesian inference to general formulations arising from elliptical and skew-elliptical families, including the multivariate Student's t and skew-t, among others.
In this work, N\'ed\'elec elements on locally refined meshes with hanging nodes are considered. A crucial aspect is the orientation of the hanging edges and faces. For non-orientable meshes, no solution or implementation has been available to date. The problem statement and corresponding algorithms are described in great detail. As a model problem, the time-harmonic Maxwell's equations are adopted because N\'ed\'elec elements constitute their natural discretization. The algorithms and implementation are demonstrated through two numerical examples on different uniformly and adaptively refined meshes. The implementation is performed within the finite element library deal.II.
We propose a topological mapping and localization system able to operate on real human colonoscopies, despite significant shape and illumination changes. The map is a graph where each node codes a colon location by a set of real images, while edges represent traversability between nodes. For close-in-time images, where scene changes are minor, place recognition can be successfully managed with the recent transformers-based local feature matching algorithms. However, under long-term changes -- such as different colonoscopies of the same patient -- feature-based matching fails. To address this, we train on real colonoscopies a deep global descriptor achieving high recall with significant changes in the scene. The addition of a Bayesian filter boosts the accuracy of long-term place recognition, enabling relocalization in a previously built map. Our experiments show that ColonMapper is able to autonomously build a map and localize against it in two important use cases: localization within the same colonoscopy or within different colonoscopies of the same patient. Code: //github.com/jmorlana/ColonMapper.
In this paper, we study an optimal control problem for a coupled non-linear system of reaction-diffusion equations with degenerate diffusion, consisting of two partial differential equations representing the density of cells and the concentration of the chemotactic agent. By controlling the concentration of the chemical substrates, this study can guide the optimal growth of cells. The novelty of this work lies on the direct and dual models that remain in a weak setting, which is uncommon in the recent literature for solving optimal control systems. Moreover, it is known that the adjoint problems offer a powerful approach to quantifying the uncertainty associated with model inputs. However, these systems typically lack closed-form solutions, making it challenging to obtain weak solutions. For that, the well-posedness of the direct problem is first well guaranteed. Then, the existence of an optimal control and the first-order optimality conditions are established. Finally, weak solutions for the adjoint system to the non-linear degenerate direct model, are introduced and investigated.
In this paper, we introduce the finite difference weighted essentially non-oscillatory (WENO) scheme based on the neural network for hyperbolic conservation laws. We employ the supervised learning and design two loss functions, one with the mean squared error and the other with the mean squared logarithmic error, where the WENO3-JS weights are computed as the labels. Each loss function consists of two components where the first component compares the difference between the weights from the neural network and WENO3-JS weights, while the second component matches the output weights of the neural network and the linear weights. The former of the loss function enforces the neural network to follow the WENO properties, implying that there is no need for the post-processing layer. Additionally the latter leads to better performance around discontinuities. As a neural network structure, we choose the shallow neural network (SNN) for computational efficiency with the Delta layer consisting of the normalized undivided differences. These constructed WENO3-SNN schemes show the outperformed results in one-dimensional examples and improved behavior in two-dimensional examples, compared with the simulations from WENO3-JS and WENO3-Z.
Several new geometric quantile-based measures for multivariate dispersion, skewness, kurtosis, and spherical asymmetry are defined. These measures differ from existing measures, which use volumes and are easy to calculate. Some theoretical justification is given, followed by experiments illustrating that they are reasonable measures of these distributional characteristics and computing confidence regions with the desired coverage.
A new approach based on censoring and moment criterion is introduced for parameter estimation of count distributions when the probability generating function is available even though a closed form of the probability mass function and/or finite moments do not exist.
In this work we propose a discretization of the second boundary condition for the Monge-Ampere equation arising in geometric optics and optimal transport. The discretization we propose is the natural generalization of the popular Oliker-Prussner method proposed in 1988. For the discretization of the differential operator, we use a discrete analogue of the subdifferential. Existence, unicity and stability of the solutions to the discrete problem are established. Convergence results to the continuous problem are given.
One of the most promising applications of machine learning (ML) in computational physics is to accelerate the solution of partial differential equations (PDEs). The key objective of ML-based PDE solvers is to output a sufficiently accurate solution faster than standard numerical methods, which are used as a baseline comparison. We first perform a systematic review of the ML-for-PDE solving literature. Of articles that use ML to solve a fluid-related PDE and claim to outperform a standard numerical method, we determine that 79% (60/76) compare to a weak baseline. Second, we find evidence that reporting biases, especially outcome reporting bias and publication bias, are widespread. We conclude that ML-for-PDE solving research is overoptimistic: weak baselines lead to overly positive results, while reporting biases lead to underreporting of negative results. To a large extent, these issues appear to be caused by factors similar to those of past reproducibility crises: researcher degrees of freedom and a bias towards positive results. We call for bottom-up cultural changes to minimize biased reporting as well as top-down structural reforms intended to reduce perverse incentives for doing so.