Accurate detection of the centerline of a thick linear structure and good estimation of its thickness are challenging topics in many real-world applications such X-ray imaging, remote sensing and lane marking detection in road traffic. Model-based approaches using Hough and Radon transforms are often used but, are not recommended for thick line detection, whereas methods based on image derivatives need further step-by-step processing making their efficiency dependent on each step outcome. In this paper, a novel paradigm to better detect thick linear objects is presented, where the 3D image gray level representation is considered as a finite mixture model of a statistical distribution, called linear anchored Gaussian distribution and parametrized by a scale factor to describe the structure thickness and radius and angle parameters to localize the structure centerline. Expectation-Maximization algorithm (Algo1) using the original image as input data is used to estimate the model parameters. To rid the data of irrelevant information brought by nonuniform and noisy background, a modified EM algorithm (Algo2) is detailed. In Experiments, the proposed algorithms show promising results on real-world images and synthetic images corrupted by blur and noise, where Algo2, using Hessian-based angle initialization, outperforms Algo1 and Algo2 with random angle initialization, in terms of running time and structure location and thickness computation accuracy.
We introduce a simulation environment to facilitate research into emergent collective behaviour, with a focus on replicating the dynamics of ant colonies. By leveraging real-world data, the environment simulates a target ant trail that a controllable agent must learn to replicate, using sensory data observed by the target ant. This work aims to contribute to the neuroevolution of models for collective behaviour, focusing on evolving neural architectures that encode domain-specific behaviours in the network topology. By evolving models that can be modified and studied in a controlled environment, we can uncover the necessary conditions required for collective behaviours to emerge. We hope this environment will be useful to those studying the role of interactions in emergent behaviour within collective systems.
In causal inference, properly selecting the propensity score (PS) model is a popular topic and has been widely investigated in observational studies. In addition, there is a large literature concerning the missing data problem. However, there are very few studies investigating the model selection issue for causal inference when the exposure is missing at random (MAR). In this paper, we discuss how to select both imputation and PS models, which can result in the smallest RMSE of the estimated causal effect. Then, we provide a new criterion, called the ``rank score" for evaluating the overall performance of both models. The simulation studies show that the full imputation plus the outcome-related PS models lead to the smallest RMSE and the rank score can also pick the best models. An application study is conducted to study the causal effect of CVD on the mortality of COVID-19 patients.
Modeling the dynamics of flexible objects has become an emerging topic in the community as these objects become more present in many applications, e.g., soft robotics. Due to the properties of flexible materials, the movements of soft objects are often highly nonlinear and, thus, complex to predict. Data-driven approaches seem promising for modeling those complex dynamics but often neglect basic physical principles, which consequently makes them untrustworthy and limits generalization. To address this problem, we propose a physics-constrained learning method that combines powerful learning tools and reliable physical models. Our method leverages the data collected from observations by sending them into a Gaussian process that is physically constrained by a distributed Port-Hamiltonian model. Based on the Bayesian nature of the Gaussian process, we not only learn the dynamics of the system, but also enable uncertainty quantification. Furthermore, the proposed approach preserves the compositional nature of Port-Hamiltonian systems.
Signed networks, characterized by edges labeled as either positive or negative, offer nuanced insights into interaction dynamics beyond the capabilities of unsigned graphs. Central to this is the task of identifying the maximum balanced subgraph, crucial for applications like polarized community detection in social networks and portfolio analysis in finance. Traditional models, however, are limited by an assumption of perfect partitioning, which fails to mirror the complexities of real-world data. Addressing this gap, we introduce an innovative generalized balanced subgraph model that incorporates tolerance for irregularities. Our proposed region-based heuristic algorithm, tailored for this NP-hard problem, strikes a balance between low time complexity and high-quality outcomes. Comparative experiments validate its superior performance against leading solutions, delivering enhanced effectiveness (notably larger subgraph sizes) and efficiency (achieving up to 100x speedup) in both traditional and generalized contexts.
Estimation of heterogeneous treatment effects is an active area of research. Most of the existing methods, however, focus on estimating the conditional average treatment effects of a single, binary treatment given a set of pre-treatment covariates. In this paper, we propose a method to estimate the heterogeneous causal effects of high-dimensional treatments, which poses unique challenges in terms of estimation and interpretation. The proposed approach finds maximally heterogeneous groups and uses a Bayesian mixture of regularized logistic regressions to identify groups of units who exhibit similar patterns of treatment effects. By directly modeling group membership with covariates, the proposed methodology allows one to explore the unit characteristics that are associated with different patterns of treatment effects. Our motivating application is conjoint analysis, which is a popular type of survey experiment in social science and marketing research and is based on a high-dimensional factorial design. We apply the proposed methodology to the conjoint data, where survey respondents are asked to select one of two immigrant profiles with randomly selected attributes. We find that a group of respondents with a relatively high degree of prejudice appears to discriminate against immigrants from non-European countries like Iraq. An open-source software package is available for implementing the proposed methodology.
Edge computing has recently emerged as a promising paradigm to boost the performance of distributed learning by leveraging the distributed resources at edge nodes. Architecturally, the introduction of edge nodes adds an additional intermediate layer between the master and workers in the original distributed learning systems, potentially leading to more severe straggler effect. Recently, coding theory-based approaches have been proposed for stragglers mitigation in distributed learning, but the majority focus on the conventional workers-master architecture. In this paper, along a different line, we investigate the problem of mitigating the straggler effect in hierarchical distributed learning systems with an additional layer composed of edge nodes. Technically, we first derive the fundamental trade-off between the computational loads of workers and the stragglers tolerance. Then, we propose a hierarchical gradient coding framework, which provides better stragglers mitigation, to achieve the derived computational trade-off. To further improve the performance of our framework in heterogeneous scenarios, we formulate an optimization problem with the objective of minimizing the expected execution time for each iteration in the learning process. We develop an efficient algorithm to mathematically solve the problem by outputting the optimum strategy. Extensive simulation results demonstrate the superiority of our schemes compared with conventional solutions.
The success of AI models relies on the availability of large, diverse, and high-quality datasets, which can be challenging to obtain due to data scarcity, privacy concerns, and high costs. Synthetic data has emerged as a promising solution by generating artificial data that mimics real-world patterns. This paper provides an overview of synthetic data research, discussing its applications, challenges, and future directions. We present empirical evidence from prior art to demonstrate its effectiveness and highlight the importance of ensuring its factuality, fidelity, and unbiasedness. We emphasize the need for responsible use of synthetic data to build more powerful, inclusive, and trustworthy language models.
The fusion of causal models with deep learning introducing increasingly intricate data sets, such as the causal associations within images or between textual components, has surfaced as a focal research area. Nonetheless, the broadening of original causal concepts and theories to such complex, non-statistical data has been met with serious challenges. In response, our study proposes redefinitions of causal data into three distinct categories from the standpoint of causal structure and representation: definite data, semi-definite data, and indefinite data. Definite data chiefly pertains to statistical data used in conventional causal scenarios, while semi-definite data refers to a spectrum of data formats germane to deep learning, including time-series, images, text, and others. Indefinite data is an emergent research sphere inferred from the progression of data forms by us. To comprehensively present these three data paradigms, we elaborate on their formal definitions, differences manifested in datasets, resolution pathways, and development of research. We summarize key tasks and achievements pertaining to definite and semi-definite data from myriad research undertakings, present a roadmap for indefinite data, beginning with its current research conundrums. Lastly, we classify and scrutinize the key datasets presently utilized within these three paradigms.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.