亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Large Language Models (LLMs) have demonstrated remarkable capabilities in conversational tasks. Embodying an LLM as a virtual human allows users to engage in face-to-face social interactions in Virtual Reality. However, the influence of person- and task-related factors in social interactions with LLM-controlled agents remains unclear. In this study, forty-six participants interacted with a virtual agent whose persona was manipulated as extravert or introvert in three different conversational tasks (small talk, knowledge test, convincing). Social-evaluation, emotional experience, and realism were assessed using ratings. Interactive engagement was measured by quantifying participants' words and conversational turns. Finally, we measured participants' willingness to ask the agent for help during the knowledge test. Our findings show that the extraverted agent was more positively evaluated, elicited a more pleasant experience and greater engagement, and was assessed as more realistic compared to the introverted agent. Whereas persona did not affect the tendency to ask for help, participants were generally more confident in the answer when they had help of the LLM. Variation of personality traits of LLM-controlled embodied virtual agents, therefore, affects social-emotional processing and behavior in virtual interactions. Embodied virtual agents allow the presentation of naturalistic social encounters in a virtual environment.

相關內容

We present a quantitative model for tracking dangerous AI capabilities over time. Our goal is to help the policy and research community visualise how dangerous capability testing can give us an early warning about approaching AI risks. We first use the model to provide a novel introduction to dangerous capability testing and how this testing can directly inform policy. Decision makers in AI labs and government often set policy that is sensitive to the estimated danger of AI systems, and may wish to set policies that condition on the crossing of a set threshold for danger. The model helps us to reason about these policy choices. We then run simulations to illustrate how we might fail to test for dangerous capabilities. To summarise, failures in dangerous capability testing may manifest in two ways: higher bias in our estimates of AI danger, or larger lags in threshold monitoring. We highlight two drivers of these failure modes: uncertainty around dynamics in AI capabilities and competition between frontier AI labs. Effective AI policy demands that we address these failure modes and their drivers. Even if the optimal targeting of resources is challenging, we show how delays in testing can harm AI policy. We offer preliminary recommendations for building an effective testing ecosystem for dangerous capabilities and advise on a research agenda.

Filtering is concerned with online estimation of the state of a dynamical system from partial and noisy observations. In applications where the state is high dimensional, ensemble Kalman filters are often the method of choice. This paper establishes long-time accuracy of ensemble Kalman filters. We introduce conditions on the dynamics and the observations under which the estimation error remains small in the long-time horizon. Our theory covers a wide class of partially-observed chaotic dynamical systems, which includes the Navier-Stokes equations and Lorenz models. In addition, we prove long-time accuracy of ensemble Kalman filters with surrogate dynamics, thus validating the use of machine-learned forecast models in ensemble data assimilation.

We derive a new adaptive leverage score sampling strategy for solving the Column Subset Selection Problem (CSSP). The resulting algorithm, called Adaptive Randomized Pivoting, can be viewed as a randomization of Osinsky's recently proposed deterministic algorithm for CSSP. It guarantees, in expectation, an approximation error that matches the optimal existence result in the Frobenius norm. Although the same guarantee can be achieved with volume sampling, our sampling strategy is much simpler and less expensive. To show the versatility of Adaptive Randomized Pivoting, we apply it to select indices in the Discrete Empirical Interpolation Method, in cross/skeleton approximation of general matrices, and in the Nystroem approximation of symmetric positive semi-definite matrices. In all these cases, the resulting randomized algorithms are new and they enjoy bounds on the expected error that match -- or improve -- the best known deterministic results. A derandomization of the algorithm for the Nystroem approximation results in a new deterministic algorithm with a rather favorable error bound.

Many real-world processes have complex tail dependence structures that cannot be characterized using classical Gaussian processes. More flexible spatial extremes models exhibit appealing extremal dependence properties but are often exceedingly prohibitive to fit and simulate from in high dimensions. In this paper, we aim to push the boundaries on computation and modeling of high-dimensional spatial extremes via integrating a new spatial extremes model that has flexible and non-stationary dependence properties in the encoding-decoding structure of a variational autoencoder called the XVAE. The XVAE can emulate spatial observations and produce outputs that have the same statistical properties as the inputs, especially in the tail. Our approach also provides a novel way of making fast inference with complex extreme-value processes. Through extensive simulation studies, we show that our XVAE is substantially more time-efficient than traditional Bayesian inference while outperforming many spatial extremes models with a stationary dependence structure. Lastly, we analyze a high-resolution satellite-derived dataset of sea surface temperature in the Red Sea, which includes 30 years of daily measurements at 16703 grid cells. We demonstrate how to use XVAE to identify regions susceptible to marine heatwaves under climate change and examine the spatial and temporal variability of the extremal dependence structure.

We investigate diffusion models to solve the Traveling Salesman Problem. Building on the recent DIFUSCO and T2TCO approaches, we propose IDEQ. IDEQ improves the quality of the solutions by leveraging the constrained structure of the state space of the TSP. Another key component of IDEQ consists in replacing the last stages of DIFUSCO curriculum learning by considering a uniform distribution over the Hamiltonian tours whose orbits by the 2-opt operator converge to the optimal solution as the training objective. Our experiments show that IDEQ improves the state of the art for such neural network based techniques on synthetic instances. More importantly, our experiments show that IDEQ performs very well on the instances of the TSPlib, a reference benchmark in the TSP community: it closely matches the performance of the best heuristics, LKH3, being even able to obtain better solutions than LKH3 on 2 instances of the TSPlib defined on 1577 and 3795 cities. IDEQ obtains 0.3% optimality gap on TSP instances made of 500 cities, and 0.5% on TSP instances with 1000 cities. This sets a new SOTA for neural based methods solving the TSP. Moreover, IDEQ exhibits a lower variance and better scales-up with the number of cities with regards to DIFUSCO and T2TCO.

The stability number of a graph, defined as the cardinality of the largest set of pairwise non-adjacent vertices, is NP-hard to compute. The exact subgraph hierarchy (ESH) provides a sequence of increasingly tighter upper bounds on the stability number, starting with the Lov\'asz theta function at the first level and including all exact subgraph constraints of subgraphs of order $k$ into the semidefinite program to compute the Lov\'asz theta function at level $k$. In this paper, we investigate the ESH for Paley graphs, a class of strongly regular, vertex-transitive graphs. We show that for Paley graphs, the bounds obtained from the ESH remain the Lov\'asz theta function up to a certain threshold level, i.e., the bounds of the ESH do not improve up to a certain level. To overcome this limitation, we introduce the local ESH for the stable set problem for vertex-transitive graphs such as Paley graphs. We prove that this new hierarchy provides upper bounds on the stability number of vertex-transitive graphs that are at least as tight as those obtained from the ESH. Additionally, our computational experiments reveal that the local ESH produces superior bounds compared to the ESH for Paley graphs.

Large Language Models (LLMs) have revolutionized various aspects of engineering and science. Their utility is often bottlenecked by the lack of interaction with the external digital environment. To overcome this limitation and achieve integration of LLMs and Artificial Intelligence (AI) into real-world applications, customized AI agents are being constructed. Based on the technological trends and techniques, we extract a high-level approach for constructing these AI agents, focusing on their underlying architecture. This thesis serves as a comprehensive guide that elucidates a multi-faceted approach for empowering LLMs with the capability to leverage Application Programming Interfaces (APIs). We present a 7-step methodology that begins with the selection of suitable LLMs and the task decomposition that is necessary for complex problem-solving. This methodology includes techniques for generating training data for API interactions and heuristics for selecting the appropriate API among a plethora of options. These steps eventually lead to the generation of API calls that are both syntactically and semantically aligned with the LLM's understanding of a given task. Moreover, we review existing frameworks and tools that facilitate these processes and highlight the gaps in current attempts. In this direction, we propose an on-device architecture that aims to exploit the functionality of carry-on devices by using small models from the Hugging Face community. We examine the effectiveness of these approaches on real-world applications of various domains, including the generation of a piano sheet. Through an extensive analysis of the literature and available technologies, this thesis aims to set a compass for researchers and practitioners to harness the full potential of LLMs augmented with external tool capabilities, thus paving the way for more autonomous, robust, and context-aware AI agents.

Retrieval Augmented Generation (RAG) systems struggle with processing multimodal documents of varying structural complexity. This paper introduces a novel multi-strategy parsing approach using LLM-powered OCR to extract content from diverse document types, including presentations and high text density files both scanned or not. The methodology employs a node-based extraction technique that creates relationships between different information types and generates context-aware metadata. By implementing a Multimodal Assembler Agent and a flexible embedding strategy, the system enhances document comprehension and retrieval capabilities. Experimental evaluations across multiple knowledge bases demonstrate the approach's effectiveness, showing improvements in answer relevancy and information faithfulness.

In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.

This paper does not describe a working system. Instead, it presents a single idea about representation which allows advances made by several different groups to be combined into an imaginary system called GLOM. The advances include transformers, neural fields, contrastive representation learning, distillation and capsules. GLOM answers the question: How can a neural network with a fixed architecture parse an image into a part-whole hierarchy which has a different structure for each image? The idea is simply to use islands of identical vectors to represent the nodes in the parse tree. If GLOM can be made to work, it should significantly improve the interpretability of the representations produced by transformer-like systems when applied to vision or language

北京阿比特科技有限公司