亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In the realm of fashion design, sketches serve as the canvas for expressing an artist's distinctive drawing style and creative vision, capturing intricate details like stroke variations and texture nuances. The advent of sketch-to-image cross-modal translation technology has notably aided designers. However, existing methods often compromise these sketch details during image generation, resulting in images that deviate from the designer's intended concept. This limitation hampers the ability to offer designers a precise preview of the final output. To overcome this challenge, we introduce HAIFIT, a novel approach that transforms sketches into high-fidelity, lifelike clothing images by integrating multi-scale features and capturing extensive feature map dependencies from diverse perspectives. Through extensive qualitative and quantitative evaluations conducted on our self-collected dataset, our method demonstrates superior performance compared to existing methods in generating photorealistic clothing images. Our method excels in preserving the distinctive style and intricate details essential for fashion design applications.

相關內容

iOS 8 提供的應用間和應用跟系統的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source:

Recent advances in diffusion-based generative modeling have led to the development of text-to-video (T2V) models that can generate high-quality videos conditioned on a text prompt. Most of these T2V models often produce single-scene video clips that depict an entity performing a particular action (e.g., `a red panda climbing a tree'). However, it is pertinent to generate multi-scene videos since they are ubiquitous in the real-world (e.g., `a red panda climbing a tree' followed by `the red panda sleeps on the top of the tree'). To generate multi-scene videos from the pretrained T2V model, we introduce Time-Aligned Captions (TALC) framework. Specifically, we enhance the text-conditioning mechanism in the T2V architecture to recognize the temporal alignment between the video scenes and scene descriptions. For instance, we condition the visual features of the earlier and later scenes of the generated video with the representations of the first scene description (e.g., `a red panda climbing a tree') and second scene description (e.g., `the red panda sleeps on the top of the tree'), respectively. As a result, we show that the T2V model can generate multi-scene videos that adhere to the multi-scene text descriptions and be visually consistent (e.g., entity and background). Further, we finetune the pretrained T2V model with multi-scene video-text data using the TALC framework. We show that the TALC-finetuned model outperforms the baseline methods by 15.5 points in the overall score, which averages visual consistency and text adherence using human evaluation. The project website is //talc-mst2v.github.io/.

Deep learning-based sketch-to-clothing image generation provides the initial designs and inspiration in the fashion design processes. However, clothing generation from freehand drawing is challenging due to the sparse and ambiguous information from the drawn sketches. The current generation models may have difficulty generating detailed texture information. In this work, we propose TexControl, a sketch-based fashion generation framework that uses a two-stage pipeline to generate the fashion image corresponding to the sketch input. First, we adopt ControlNet to generate the fashion image from sketch and keep the image outline stable. Then, we use an image-to-image method to optimize the detailed textures of the generated images and obtain the final results. The evaluation results show that TexControl can generate fashion images with high-quality texture as fine-grained image generation.

This paper explores the intersection of technology and sleep pattern comprehension, presenting a cutting-edge two-stage framework that harnesses the power of Large Language Models (LLMs). The primary objective is to deliver precise sleep predictions paired with actionable feedback, addressing the limitations of existing solutions. This innovative approach involves leveraging the GLOBEM dataset alongside synthetic data generated by LLMs. The results highlight significant improvements, underlining the efficacy of merging advanced machine-learning techniques with a user-centric design ethos. Through this exploration, we bridge the gap between technological sophistication and user-friendly design, ensuring that our framework yields accurate predictions and translates them into actionable insights.

News image captioning requires model to generate an informative caption rich in entities, with the news image and the associated news article. Though Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities in addressing various vision-language tasks, our research finds that current MLLMs still bear limitations in handling entity information on news image captioning task. Besides, while MLLMs have the ability to process long inputs, generating high-quality news image captions still requires a trade-off between sufficiency and conciseness of textual input information. To explore the potential of MLLMs and address problems we discovered, we propose : an Entity-Aware Multimodal Alignment based approach for news image captioning. Our approach first aligns the MLLM through Balance Training Strategy with two extra alignment tasks: Entity-Aware Sentence Selection task and Entity Selection task, together with News Image Captioning task, to enhance its capability in handling multimodal entity information. The aligned MLLM will utilizes the additional entity-related information it explicitly extracts to supplement its textual input while generating news image captions. Our approach achieves better results than all previous models in CIDEr score on GoodNews dataset (72.33 -> 88.39) and NYTimes800k dataset (70.83 -> 85.61).

In the evolution towards 6G, integrating Artificial Intelligence (AI) with advanced network infrastructure emerges as a pivotal strategy for enhancing network intelligence and resource utilization. Existing distributed learning frameworks like Federated Learning and Split Learning often struggle with significant challenges in dynamic network environments including high synchronization demands, costly communication overheads, severe computing resource consumption, and data heterogeneity across network nodes. These obstacles hinder the applications of ubiquitous computing capabilities of 6G networks, especially in light of the trend of escalating model parameters and training data volumes. To address these challenges effectively, this paper introduces "Snake Learning", a cost-effective distributed learning framework. Specifically, Snake Learning respects the heterogeneity of inter-node computing capability and local data distribution in 6G networks, and sequentially trains the designated part of model layers on individual nodes. This layer-by-layer serpentine update mechanism contributes to significantly reducing the requirements for storage, memory and communication during the model training phase, and demonstrates superior adaptability and efficiency for both Computer Vision (CV) training and Large Language Model (LLM) fine-tuning tasks across homogeneous and heterogeneous data distributions.

In the vast and dynamic landscape of urban settings, Traffic Safety Description and Analysis plays a pivotal role in applications ranging from insurance inspection to accident prevention. This paper introduces CityLLaVA, a novel fine-tuning framework for Visual Language Models (VLMs) designed for urban scenarios. CityLLaVA enhances model comprehension and prediction accuracy through (1) employing bounding boxes for optimal visual data preprocessing, including video best-view selection and visual prompt engineering during both training and testing phases; (2) constructing concise Question-Answer sequences and designing textual prompts to refine instruction comprehension; (3) implementing block expansion to fine-tune large VLMs efficiently; and (4) advancing prediction accuracy via a unique sequential questioning-based prediction augmentation. Demonstrating top-tier performance, our method achieved a benchmark score of 33.4308, securing the leading position on the leaderboard. The code can be found: //github.com/alibaba/AICITY2024_Track2_AliOpenTrek_CityLLaVA

Effective editing of personal content holds a pivotal role in enabling individuals to express their creativity, weaving captivating narratives within their visual stories, and elevate the overall quality and impact of their visual content. Therefore, in this work, we introduce SwapAnything, a novel framework that can swap any objects in an image with personalized concepts given by the reference, while keeping the context unchanged. Compared with existing methods for personalized subject swapping, SwapAnything has three unique advantages: (1) precise control of arbitrary objects and parts rather than the main subject, (2) more faithful preservation of context pixels, (3) better adaptation of the personalized concept to the image. First, we propose targeted variable swapping to apply region control over latent feature maps and swap masked variables for faithful context preservation and initial semantic concept swapping. Then, we introduce appearance adaptation, to seamlessly adapt the semantic concept into the original image in terms of target location, shape, style, and content during the image generation process. Extensive results on both human and automatic evaluation demonstrate significant improvements of our approach over baseline methods on personalized swapping. Furthermore, SwapAnything shows its precise and faithful swapping abilities across single object, multiple objects, partial object, and cross-domain swapping tasks. SwapAnything also achieves great performance on text-based swapping and tasks beyond swapping such as object insertion.

In the rapidly advancing realm of visual generation, diffusion models have revolutionized the landscape, marking a significant shift in capabilities with their impressive text-guided generative functions. However, relying solely on text for conditioning these models does not fully cater to the varied and complex requirements of different applications and scenarios. Acknowledging this shortfall, a variety of studies aim to control pre-trained text-to-image (T2I) models to support novel conditions. In this survey, we undertake a thorough review of the literature on controllable generation with T2I diffusion models, covering both the theoretical foundations and practical advancements in this domain. Our review begins with a brief introduction to the basics of denoising diffusion probabilistic models (DDPMs) and widely used T2I diffusion models. We then reveal the controlling mechanisms of diffusion models, theoretically analyzing how novel conditions are introduced into the denoising process for conditional generation. Additionally, we offer a detailed overview of research in this area, organizing it into distinct categories from the condition perspective: generation with specific conditions, generation with multiple conditions, and universal controllable generation. For an exhaustive list of the controllable generation literature surveyed, please refer to our curated repository at \url{//github.com/PRIV-Creation/Awesome-Controllable-T2I-Diffusion-Models}.

Diffusion models have emerged as a prominent class of generative models, surpassing previous methods regarding sample quality and training stability. Recent works have shown the advantages of diffusion models in improving reinforcement learning (RL) solutions, including as trajectory planners, expressive policy classes, data synthesizers, etc. This survey aims to provide an overview of the advancements in this emerging field and hopes to inspire new avenues of research. First, we examine several challenges encountered by current RL algorithms. Then, we present a taxonomy of existing methods based on the roles played by diffusion models in RL and explore how the existing challenges are addressed. We further outline successful applications of diffusion models in various RL-related tasks while discussing the limitations of current approaches. Finally, we conclude the survey and offer insights into future research directions, focusing on enhancing model performance and applying diffusion models to broader tasks. We are actively maintaining a GitHub repository for papers and other related resources in applying diffusion models in RL: //github.com/apexrl/Diff4RLSurvey .

Diffusion models (DMs) have shown great potential for high-quality image synthesis. However, when it comes to producing images with complex scenes, how to properly describe both image global structures and object details remains a challenging task. In this paper, we present Frido, a Feature Pyramid Diffusion model performing a multi-scale coarse-to-fine denoising process for image synthesis. Our model decomposes an input image into scale-dependent vector quantized features, followed by a coarse-to-fine gating for producing image output. During the above multi-scale representation learning stage, additional input conditions like text, scene graph, or image layout can be further exploited. Thus, Frido can be also applied for conditional or cross-modality image synthesis. We conduct extensive experiments over various unconditioned and conditional image generation tasks, ranging from text-to-image synthesis, layout-to-image, scene-graph-to-image, to label-to-image. More specifically, we achieved state-of-the-art FID scores on five benchmarks, namely layout-to-image on COCO and OpenImages, scene-graph-to-image on COCO and Visual Genome, and label-to-image on COCO. Code is available at //github.com/davidhalladay/Frido.

北京阿比特科技有限公司