Image reconstruction is likely the most predominant auxiliary task for image classification. In this paper, we investigate "approximating the Fourier Transform of the input image" as a potential alternative, in the hope that it may further boost the performances on the primary task or introduce novel constraints not well covered by image reconstruction. We experimented with five popular classification architectures on the CIFAR-10 dataset, and the empirical results indicated that our proposed auxiliary task generally improves the classification accuracy. More notably, the results showed that in certain cases our proposed auxiliary task may enhance the classifiers' resistance to adversarial attacks generated using the fast gradient sign method.
A rational approximation is a powerful method for estimating functions using rational polynomial functions. Motivated by the importance of matrix function in modern applications and its wide potential, we propose a unique optimization approach to construct rational approximations for matrix function evaluation. In particular, we study the minimax rational approximation of a real function and observe that it leads to a series of quasiconvex problems. This observation opens the door for a flexible method that calculates the minimax while incorporating constraints that may enhance the quality of approximation and its properties. Furthermore, the various properties, such as denominator bounds, positivity, and more, make the output approximation more suitable for matrix function tasks. Specifically, they can guarantee the condition number of the matrix, which one needs to invert for evaluating the rational matrix function. Finally, we demonstrate the efficiency of our approach on several applications of matrix functions based on direct spectrum filtering.
Object detection with transformers (DETR) reaches competitive performance with Faster R-CNN via a transformer encoder-decoder architecture. Inspired by the great success of pre-training transformers in natural language processing, we propose a pretext task named random query patch detection to unsupervisedly pre-train DETR (UP-DETR) for object detection. Specifically, we randomly crop patches from the given image and then feed them as queries to the decoder. The model is pre-trained to detect these query patches from the original image. During the pre-training, we address two critical issues: multi-task learning and multi-query localization. (1) To trade-off multi-task learning of classification and localization in the pretext task, we freeze the CNN backbone and propose a patch feature reconstruction branch which is jointly optimized with patch detection. (2) To perform multi-query localization, we introduce UP-DETR from single-query patch and extend it to multi-query patches with object query shuffle and attention mask. In our experiments, UP-DETR significantly boosts the performance of DETR with faster convergence and higher precision on PASCAL VOC and COCO datasets. The code will be available soon.
Pictures of everyday life are inherently multi-label in nature. Hence, multi-label classification is commonly used to analyze their content. In typical multi-label datasets, each picture contains only a few positive labels, and many negative ones. This positive-negative imbalance can result in under-emphasizing gradients from positive labels during training, leading to poor accuracy. In this paper, we introduce a novel asymmetric loss ("ASL"), that operates differently on positive and negative samples. The loss dynamically down-weights the importance of easy negative samples, causing the optimization process to focus more on the positive samples, and also enables to discard mislabeled negative samples. We demonstrate how ASL leads to a more "balanced" network, with increased average probabilities for positive samples, and show how this balanced network is translated to better mAP scores, compared to commonly used losses. Furthermore, we offer a method that can dynamically adjust the level of asymmetry throughout the training. With ASL, we reach new state-of-the-art results on three common multi-label datasets, including achieving 86.6% on MS-COCO. We also demonstrate ASL applicability for other tasks such as fine-grain single-label classification and object detection. ASL is effective, easy to implement, and does not increase the training time or complexity. Implementation is available at: //github.com/Alibaba-MIIL/ASL.
Many tasks in natural language processing can be viewed as multi-label classification problems. However, most of the existing models are trained with the standard cross-entropy loss function and use a fixed prediction policy (e.g., a threshold of 0.5) for all the labels, which completely ignores the complexity and dependencies among different labels. In this paper, we propose a meta-learning method to capture these complex label dependencies. More specifically, our method utilizes a meta-learner to jointly learn the training policies and prediction policies for different labels. The training policies are then used to train the classifier with the cross-entropy loss function, and the prediction policies are further implemented for prediction. Experimental results on fine-grained entity typing and text classification demonstrate that our proposed method can obtain more accurate multi-label classification results.
Most existing approaches to disfluency detection heavily rely on human-annotated data, which is expensive to obtain in practice. To tackle the training data bottleneck, we investigate methods for combining multiple self-supervised tasks-i.e., supervised tasks where data can be collected without manual labeling. First, we construct large-scale pseudo training data by randomly adding or deleting words from unlabeled news data, and propose two self-supervised pre-training tasks: (i) tagging task to detect the added noisy words. (ii) sentence classification to distinguish original sentences from grammatically-incorrect sentences. We then combine these two tasks to jointly train a network. The pre-trained network is then fine-tuned using human-annotated disfluency detection training data. Experimental results on the commonly used English Switchboard test set show that our approach can achieve competitive performance compared to the previous systems (trained using the full dataset) by using less than 1% (1000 sentences) of the training data. Our method trained on the full dataset significantly outperforms previous methods, reducing the error by 21% on English Switchboard.
This work presents a new strategy for multi-class classification that requires no class-specific labels, but instead leverages pairwise similarity between examples, which is a weaker form of annotation. The proposed method, meta classification learning, optimizes a binary classifier for pairwise similarity prediction and through this process learns a multi-class classifier as a submodule. We formulate this approach, present a probabilistic graphical model for it, and derive a surprisingly simple loss function that can be used to learn neural network-based models. We then demonstrate that this same framework generalizes to the supervised, unsupervised cross-task, and semi-supervised settings. Our method is evaluated against state of the art in all three learning paradigms and shows a superior or comparable accuracy, providing evidence that learning multi-class classification without multi-class labels is a viable learning option.
Recently advancements in sequence-to-sequence neural network architectures have led to an improved natural language understanding. When building a neural network-based Natural Language Understanding component, one main challenge is to collect enough training data. The generation of a synthetic dataset is an inexpensive and quick way to collect data. Since this data often has less variety than real natural language, neural networks often have problems to generalize to unseen utterances during testing. In this work, we address this challenge by using multi-task learning. We train out-of-domain real data alongside in-domain synthetic data to improve natural language understanding. We evaluate this approach in the domain of airline travel information with two synthetic datasets. As out-of-domain real data, we test two datasets based on the subtitles of movies and series. By using an attention-based encoder-decoder model, we were able to improve the F1-score over strong baselines from 80.76 % to 84.98 % in the smaller synthetic dataset.
There is growing interest in object detection in advanced driver assistance systems and autonomous robots and vehicles. To enable such innovative systems, we need faster object detection. In this work, we investigate the trade-off between accuracy and speed with domain-specific approximations, i.e. category-aware image size scaling and proposals scaling, for two state-of-the-art deep learning-based object detection meta-architectures. We study the effectiveness of applying approximation both statically and dynamically to understand the potential and the applicability of them. By conducting experiments on the ImageNet VID dataset, we show that domain-specific approximation has great potential to improve the speed of the system without deteriorating the accuracy of object detectors, i.e. up to 7.5x speedup for dynamic domain-specific approximation. To this end, we present our insights toward harvesting domain-specific approximation as well as devise a proof-of-concept runtime, AutoFocus, that exploits dynamic domain-specific approximation.
In this paper, we propose an improved quantitative evaluation framework for Generative Adversarial Networks (GANs) on generating domain-specific images, where we improve conventional evaluation methods on two levels: the feature representation and the evaluation metric. Unlike most existing evaluation frameworks which transfer the representation of ImageNet inception model to map images onto the feature space, our framework uses a specialized encoder to acquire fine-grained domain-specific representation. Moreover, for datasets with multiple classes, we propose Class-Aware Frechet Distance (CAFD), which employs a Gaussian mixture model on the feature space to better fit the multi-manifold feature distribution. Experiments and analysis on both the feature level and the image level were conducted to demonstrate improvements of our proposed framework over the recently proposed state-of-the-art FID method. To our best knowledge, we are the first to provide counter examples where FID gives inconsistent results with human judgments. It is shown in the experiments that our framework is able to overcome the shortness of FID and improves robustness. Code will be made available.
In this paper, we study object detection using a large pool of unlabeled images and only a few labeled images per category, named "few-example object detection". The key challenge consists in generating trustworthy training samples as many as possible from the pool. Using few training examples as seeds, our method iterates between model training and high-confidence sample selection. In training, easy samples are generated first and, then the poorly initialized model undergoes improvement. As the model becomes more discriminative, challenging but reliable samples are selected. After that, another round of model improvement takes place. To further improve the precision and recall of the generated training samples, we embed multiple detection models in our framework, which has proven to outperform the single model baseline and the model ensemble method. Experiments on PASCAL VOC'07, MS COCO'14, and ILSVRC'13 indicate that by using as few as three or four samples selected for each category, our method produces very competitive results when compared to the state-of-the-art weakly-supervised approaches using a large number of image-level labels.