亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Today, malware is one of the primary cyberthreats to organizations. Malware has pervaded almost every type of computing device including the ones having limited memory, battery and computation power such as mobile phones, tablets and embedded devices like Internet-of-Things (IoT) devices. Consequently, the privacy and security of the malware infected systems and devices have been heavily jeopardized. In recent years, researchers have leveraged machine learning based strategies for malware detection and classification. Malware analysis approaches can only be employed in resource constrained environments if the methods are lightweight in nature. In this paper, we present MALITE, a lightweight malware analysis system, that can classify various malware families and distinguish between benign and malicious binaries. MALITE converts a binary into a gray scale or an RGB image and employs low memory and battery power consuming as well as computationally inexpensive malware analysis strategies. We have designed MALITE-MN, a lightweight neural network based architecture and MALITE-HRF, an ultra lightweight random forest based method that uses histogram features extracted by a sliding window. We evaluate the performance of both on six publicly available datasets (Malimg, Microsoft BIG, Dumpware10, MOTIF, Drebin and CICAndMal2017), and compare them to four state-of-the-art malware classification techniques. The results show that MALITE-MN and MALITE-HRF not only accurately identify and classify malware but also respectively consume several orders of magnitude lower resources (in terms of both memory as well as computation capabilities), making them much more suitable for resource constrained environments.

相關內容

In the absence of readily available labeled data for a given sequence labeling task and language, annotation projection has been proposed as one of the possible strategies to automatically generate annotated data. Annotation projection has often been formulated as the task of transporting, on parallel corpora, the labels pertaining to a given span in the source language into its corresponding span in the target language. In this paper we present T-Projection, a novel approach for annotation projection that leverages large pretrained text-to-text language models and state-of-the-art machine translation technology. T-Projection decomposes the label projection task into two subtasks: (i) A candidate generation step, in which a set of projection candidates using a multilingual T5 model is generated and, (ii) a candidate selection step, in which the generated candidates are ranked based on translation probabilities. We conducted experiments on intrinsic and extrinsic tasks in 5 Indo-European and 8 low-resource African languages. We demostrate that T-projection outperforms previous annotation projection methods by a wide margin. We believe that T-Projection can help to automatically alleviate the lack of high-quality training data for sequence labeling tasks. Code and data are publicly available.

Approximate computing is a promising approach to reduce the power, delay, and area in hardware design for many error-resilient applications such as machine learning (ML) and digital signal processing (DSP) systems, in which multipliers usually are key arithmetic units. Due to the underlying architectural differences between ASICs and FPGAs, existing ASIC-based approximate multipliers do not offer symmetrical gains when they are implemented by FPGA resources. In this paper, we propose AMG, an open-source automated approximate multiplier generator for FPGAs driven by Bayesian optimization (BO) with parallel evaluation. The proposed method simplifies the exact half adders (HAs) for the initial partial product (PP) compression in a multiplier while preserving coarse-grained additions for the following accumulation. The generated multipliers can be effectively mapped to lookup tables (LUTs) and carry chains provided by modern FPGAs, reducing hardware costs with acceptable errors. Compared with 1167 multipliers from previous works, our generated multipliers can form a Pareto front with 28.70%-38.47% improvements in terms of the product of hardware cost and error on average. All source codes, reproduced multipliers, and our generated multipliers are available at //github.com/phyzhenli/AMG.

Prefetching is a crucial technique employed in traditional databases to enhance interactivity, particularly in the context of data exploitation. Data exploration is a query processing paradigm in which users search for insights buried in the data, often not knowing what exactly they are looking for. Data exploratory tools deal with multiple challenges such as the need for interactivity with no a priori knowledge being present to help with the system tuning. The state-of-the-art prefetchers are specifically designed for navigational workloads only, where the number of possible actions is limited. The prefetchers that work with SQL-based workloads, on the other hand, mainly rely on data logical addresses rather than the data semantics. They fail to predict complex access patterns in cases where the database size is substantial, resulting in an extensive address space, or when there is frequent co-accessing of data. In this paper, we propose SeLeP, a semantic prefetcher that makes prefetching decisions for both types of workloads, based on the encoding of the data values contained inside the accessed blocks. Following the popular path of using machine learning approaches to automatically learn the hidden patterns, we formulate the prefetching task as a time-series forecasting problem and use an encoder-decoder LSTM architecture to learn the data access pattern. Our extensive experiments, across real-life exploratory workloads, demonstrate that SeLeP improves the hit ratio up to 40% and reduces I/O time up to 45% compared to the state-of-the-art, attaining impressive 95% hit ratio and 80% I/O reduction on average.

Profile hidden Markov models (pHMMs) are widely employed in various bioinformatics applications to identify similarities between biological sequences, such as DNA or protein sequences. In pHMMs, sequences are represented as graph structures. These probabilities are subsequently used to compute the similarity score between a sequence and a pHMM graph. The Baum-Welch algorithm, a prevalent and highly accurate method, utilizes these probabilities to optimize and compute similarity scores. However, the Baum-Welch algorithm is computationally intensive, and existing solutions offer either software-only or hardware-only approaches with fixed pHMM designs. We identify an urgent need for a flexible, high-performance, and energy-efficient HW/SW co-design to address the major inefficiencies in the Baum-Welch algorithm for pHMMs. We introduce ApHMM, the first flexible acceleration framework designed to significantly reduce both computational and energy overheads associated with the Baum-Welch algorithm for pHMMs. ApHMM tackles the major inefficiencies in the Baum-Welch algorithm by 1) designing flexible hardware to accommodate various pHMM designs, 2) exploiting predictable data dependency patterns through on-chip memory with memoization techniques, 3) rapidly filtering out negligible computations using a hardware-based filter, and 4) minimizing redundant computations. ApHMM achieves substantial speedups of 15.55x - 260.03x, 1.83x - 5.34x, and 27.97x when compared to CPU, GPU, and FPGA implementations of the Baum-Welch algorithm, respectively. ApHMM outperforms state-of-the-art CPU implementations in three key bioinformatics applications: 1) error correction, 2) protein family search, and 3) multiple sequence alignment, by 1.29x - 59.94x, 1.03x - 1.75x, and 1.03x - 1.95x, respectively, while improving their energy efficiency by 64.24x - 115.46x, 1.75x, 1.96x.

Quantum networks serve as the means to transmit information, encoded in quantum bits or qubits, between quantum processors that are physically separated. Given the instability of qubits, the design of such networks is challenging, necessitating a careful balance between reliability and efficiency. Typically, quantum networks fall into two categories: those utilize quantum entanglements for quantum teleportation, and those directly transfer quantum message. In this paper, we present SurfaceNet, a quantum network in the second category that employs surface codes as logical qubits for preserving and transferring message. Our approach of using surface codes can fault-tolerantly correct both operational and photon loss errors within the network. We propose a novel one-way quantum communication procedure, designed to better integrate surface codes into our network architecture. We also propose an efficient routing protocol that optimizes resource utilization for our communication procedure. Simulation results demonstrate that SurfaceNet significantly enhances the overall communication fidelity.

Hearing is arguably an essential ability of artificial intelligence (AI) agents in the physical world, which refers to the perception and understanding of general auditory information consisting of at least three types of sounds: speech, audio events, and music. In this paper, we propose SALMONN, a speech audio language music open neural network, built by integrating a pre-trained text-based large language model (LLM) with speech and audio encoders into a single multimodal model. SALMONN enables the LLM to directly process and understand general audio inputs and achieve competitive performances on a number of speech and audio tasks used in training, such as automatic speech recognition and translation, auditory-information-based question answering, emotion recognition, speaker verification, and music and audio captioning \textit{etc.} SALMONN also has a diverse set of emergent abilities unseen in the training, which includes but is not limited to speech translation to untrained languages, speech-based slot filling, spoken-query-based question answering, audio-based storytelling, and speech audio co-reasoning \textit{etc}. The presence of the cross-modal emergent abilities is studied, and a novel few-shot activation tuning approach is proposed to activate such abilities of SALMONN. To our knowledge, SALMONN is the first model of its type and can be regarded as a step towards AI with generic hearing abilities. An interactive demo of SALMONN is available at \texttt{\url{//github.com/bytedance/SALMONN}}, and the training code and model checkpoints will be released upon acceptance.

Seamless human-robot manipulation in close proximity relies on accurate forecasts of human motion. While there has been significant progress in learning forecast models at scale, when applied to manipulation tasks, these models accrue high errors at critical transition points leading to degradation in downstream planning performance. Our key insight is that instead of predicting the most likely human motion, it is sufficient to produce forecasts that capture how future human motion would affect the cost of a robot's plan. We present ManiCast, a novel framework that learns cost-aware human forecasts and feeds them to a model predictive control planner to execute collaborative manipulation tasks. Our framework enables fluid, real-time interactions between a human and a 7-DoF robot arm across a number of real-world tasks such as reactive stirring, object handovers, and collaborative table setting. We evaluate both the motion forecasts and the end-to-end forecaster-planner system against a range of learned and heuristic baselines while additionally contributing new datasets. We release our code and datasets at //portal-cornell.github.io/manicast/.

The incredible development of federated learning (FL) has benefited various tasks in the domains of computer vision and natural language processing, and the existing frameworks such as TFF and FATE has made the deployment easy in real-world applications. However, federated graph learning (FGL), even though graph data are prevalent, has not been well supported due to its unique characteristics and requirements. The lack of FGL-related framework increases the efforts for accomplishing reproducible research and deploying in real-world applications. Motivated by such strong demand, in this paper, we first discuss the challenges in creating an easy-to-use FGL package and accordingly present our implemented package FederatedScope-GNN (FS-G), which provides (1) a unified view for modularizing and expressing FGL algorithms; (2) comprehensive DataZoo and ModelZoo for out-of-the-box FGL capability; (3) an efficient model auto-tuning component; and (4) off-the-shelf privacy attack and defense abilities. We validate the effectiveness of FS-G by conducting extensive experiments, which simultaneously gains many valuable insights about FGL for the community. Moreover, we employ FS-G to serve the FGL application in real-world E-commerce scenarios, where the attained improvements indicate great potential business benefits. We publicly release FS-G, as submodules of FederatedScope, at //github.com/alibaba/FederatedScope to promote FGL's research and enable broad applications that would otherwise be infeasible due to the lack of a dedicated package.

Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.

Following unprecedented success on the natural language tasks, Transformers have been successfully applied to several computer vision problems, achieving state-of-the-art results and prompting researchers to reconsider the supremacy of convolutional neural networks (CNNs) as {de facto} operators. Capitalizing on these advances in computer vision, the medical imaging field has also witnessed growing interest for Transformers that can capture global context compared to CNNs with local receptive fields. Inspired from this transition, in this survey, we attempt to provide a comprehensive review of the applications of Transformers in medical imaging covering various aspects, ranging from recently proposed architectural designs to unsolved issues. Specifically, we survey the use of Transformers in medical image segmentation, detection, classification, reconstruction, synthesis, registration, clinical report generation, and other tasks. In particular, for each of these applications, we develop taxonomy, identify application-specific challenges as well as provide insights to solve them, and highlight recent trends. Further, we provide a critical discussion of the field's current state as a whole, including the identification of key challenges, open problems, and outlining promising future directions. We hope this survey will ignite further interest in the community and provide researchers with an up-to-date reference regarding applications of Transformer models in medical imaging. Finally, to cope with the rapid development in this field, we intend to regularly update the relevant latest papers and their open-source implementations at \url{//github.com/fahadshamshad/awesome-transformers-in-medical-imaging}.

北京阿比特科技有限公司