亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The unprecedented development of non-terrestrial networks (NTN) utilizes the low-altitude airspace for commercial and social flying activities. The integration of NTN and terrestrial networks leads to the emergence of low-altitude economy (LAE). A series of LAE application scenarios are enabled by the sensing, communication, and transportation functionalities of the aircrafts. The prerequisite technologies supporting LAE are introduced in this paper, including the network coverage and aircrafts detection. The LAE functionalities assisted by aircrafts with respect to sensing and communication are then summarized, including the terrestrial and non-terrestrial targets sensing, ubiquitous coverage, relaying, and traffic offloading. Finally, several future directions are identified, including aircrafts collaboration, energy efficiency, and artificial intelligence enabled LAE.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

A new breed of gated-linear recurrent neural networks has reached state-of-the-art performance on a range of sequence modeling problems. Such models naturally handle long sequences efficiently, as the cost of processing a new input is independent of sequence length. Here, we explore another advantage of these stateful sequence models, inspired by the success of model merging through parameter interpolation. Building on parallels between fine-tuning and in-context learning, we investigate whether we can treat internal states as task vectors that can be stored, retrieved, and then linearly combined, exploiting the linearity of recurrence. We study this form of fast model merging on Mamba-2.8b, a pretrained recurrent model, and present preliminary evidence that simple linear state interpolation methods suffice to improve next-token perplexity as well as downstream in-context learning task performance.

The development of Autonomous Driving (AD) systems in simulated environments like CARLA is crucial for advancing real-world automotive technologies. To drive innovation, CARLA introduced Leaderboard 2.0, significantly more challenging than its predecessor. However, current AD methods have struggled to achieve satisfactory outcomes due to a lack of sufficient ground truth data. Human driving logs provided by CARLA are insufficient, and previously successful expert agents like Autopilot and Roach, used for collecting datasets, have seen reduced effectiveness under these more demanding conditions. To overcome these data limitations, we introduce PRIBOOT, an expert agent that leverages limited human logs with privileged information. We have developed a novel BEV representation specifically tailored to meet the demands of this new benchmark and processed it as an RGB image to facilitate the application of transfer learning techniques, instead of using a set of masks. Additionally, we propose the Infraction Rate Score (IRS), a new evaluation metric designed to provide a more balanced assessment of driving performance over extended routes. PRIBOOT is the first model to achieve a Route Completion (RC) of 75% in Leaderboard 2.0, along with a Driving Score (DS) and IRS of 20% and 45%, respectively. With PRIBOOT, researchers can now generate extensive datasets, potentially solving the data availability issues that have hindered progress in this benchmark.

The evolution of fifth generation (5G) wireless communication networks has led to an increased need for wireless resource management solutions that provide higher data rates, wide coverage, low latency, and power efficiency. Yet, many of existing traditional approaches remain non-practical due to computational limitations, and unrealistic presumptions of static network conditions and algorithm initialization dependencies. This creates an important gap between theoretical analysis and real-time processing of algorithms. To bridge this gap, deep learning based techniques offer promising solutions with their representational capabilities for universal function approximation. We propose a novel unsupervised deep learning based joint power allocation and beamforming design for multi-user multiple-input single-output (MU-MISO) system. The objective is to enhance the spectral efficiency by maximizing the sum-rate with the proposed joint design framework, NNBF-P while also offering computationally efficient solution in contrast to conventional approaches. We conduct experiments for diverse settings to compare the performance of NNBF-P with zero-forcing beamforming (ZFBF), minimum mean square error (MMSE) beamforming, and NNBF, which is also our deep learning based beamforming design without joint power allocation scheme. Experiment results demonstrate the superiority of NNBF-P compared to ZFBF, and MMSE while NNBF can have lower performances than MMSE and ZFBF in some experiment settings. It can also demonstrate the effectiveness of joint design framework with respect to NNBF.

Low Earth orbit (LEO) satellites have been envisioned as a significant component of the sixth generation (6G) network architecture for achieving ubiquitous coverage and seamless access. However, the implementation of LEO satellites is largely restricted by the deployment of ground stations. Inter-satellite links (ISLs) have been regarded as a promising technique to fully exploit the potentials of LEO mega constellations by concatenating multiple satellites to constitute an autonomous space network. In this article, we present the merits of implementing ISLs in LEO mega constellations and the representative applications empowered/inspired by ISLs. Moreover, we outline several key technical challenges as well as potential solutions related to LEO satellite networks with ISLs, including performance analysis for system design, routing and load balancing, and resource allocation. Particularly, the potential of using ISLs in enhancing in-flight connectivity is showcased with a preliminary performance evaluation. Finally, some open issues are discussed to inspire future research.

Decision processes of computer vision models - especially deep neural networks - are opaque in nature, meaning that these decisions cannot be understood by humans. Thus, over the last years, many methods to provide human-understandable explanations have been proposed. For image classification, the most common group are saliency methods, which provide (super-)pixelwise feature attribution scores for input images. But their evaluation still poses a problem, as their results cannot be simply compared to the unknown ground truth. To overcome this, a slew of different proxy metrics have been defined, which are - as the explainability methods themselves - often built on intuition and thus, are possibly unreliable. In this paper, new evaluation metrics for saliency methods are developed and common saliency methods are benchmarked on ImageNet. In addition, a scheme for reliability evaluation of such metrics is proposed that is based on concepts from psychometric testing. The used code can be found at //github.com/lelo204/ClassificationMetricsForImageExplanations .

The emergence of massive ultra-reliable and low latency communications (mURLLC) as a category of time/reliability-sensitive service over 6G networks has received considerable research attention, which has presented unprecedented challenges. As one of the key enablers for 6G, satellite-terrestrial integrated networks (STIN) have been developed to offer more expansive connectivity and comprehensive 3D coverage in space-aerial-terrestrial domains for supporting 6G mission-critical mURLLC applications while fulfilling diverse and rigorous quality of service (QoS) requirements. In the context of these mURLLC-driven satellite services, data freshness assumes paramount importance, as outdated data may engender unpredictable or catastrophic outcomes. To effectively measure data freshness in satellite-terrestrial integrated communications, age of information (AoI) has recently surfaced as a new dimension of QoS metric to support time-sensitive applications. It is crucial to design new analytical models that ensure stringent and diverse QoS metrics bounded by different key parameters, including AoI, delay, and reliability, over 6G satellite-terrestrial integrated networks. However, due to the complicated and dynamic nature of satellite-terrestrial integrated network environments, the research on efficiently defining new statistical QoS schemes while taking into account varying degrees of freedom has still been in their infancy. To remedy these deficiencies, in this paper we develop statistical QoS provisioning schemes over 6G satellite-terrestrial integrated networks in the finite blocklength regime. Particularly, we firstly introduce and review key technologies for supporting mURLLC. Secondly, we formulate a number of novel fundamental statistical-QoS metrics in the finite blocklength regime. Finally, we conduct a set of simulations to evaluate our developed statistical QoS schemes.

With the rise of deep convolutional neural networks, object detection has achieved prominent advances in past years. However, such prosperity could not camouflage the unsatisfactory situation of Small Object Detection (SOD), one of the notoriously challenging tasks in computer vision, owing to the poor visual appearance and noisy representation caused by the intrinsic structure of small targets. In addition, large-scale dataset for benchmarking small object detection methods remains a bottleneck. In this paper, we first conduct a thorough review of small object detection. Then, to catalyze the development of SOD, we construct two large-scale Small Object Detection dAtasets (SODA), SODA-D and SODA-A, which focus on the Driving and Aerial scenarios respectively. SODA-D includes 24704 high-quality traffic images and 277596 instances of 9 categories. For SODA-A, we harvest 2510 high-resolution aerial images and annotate 800203 instances over 9 classes. The proposed datasets, as we know, are the first-ever attempt to large-scale benchmarks with a vast collection of exhaustively annotated instances tailored for multi-category SOD. Finally, we evaluate the performance of mainstream methods on SODA. We expect the released benchmarks could facilitate the development of SOD and spawn more breakthroughs in this field. Datasets and codes will be available soon at: \url{//shaunyuan22.github.io/SODA}.

Graph neural networks (GNNs) have emerged as a series of competent graph learning methods for diverse real-world scenarios, ranging from daily applications like recommendation systems and question answering to cutting-edge technologies such as drug discovery in life sciences and n-body simulation in astrophysics. However, task performance is not the only requirement for GNNs. Performance-oriented GNNs have exhibited potential adverse effects like vulnerability to adversarial attacks, unexplainable discrimination against disadvantaged groups, or excessive resource consumption in edge computing environments. To avoid these unintentional harms, it is necessary to build competent GNNs characterised by trustworthiness. To this end, we propose a comprehensive roadmap to build trustworthy GNNs from the view of the various computing technologies involved. In this survey, we introduce basic concepts and comprehensively summarise existing efforts for trustworthy GNNs from six aspects, including robustness, explainability, privacy, fairness, accountability, and environmental well-being. Additionally, we highlight the intricate cross-aspect relations between the above six aspects of trustworthy GNNs. Finally, we present a thorough overview of trending directions for facilitating the research and industrialisation of trustworthy GNNs.

Vast amount of data generated from networks of sensors, wearables, and the Internet of Things (IoT) devices underscores the need for advanced modeling techniques that leverage the spatio-temporal structure of decentralized data due to the need for edge computation and licensing (data access) issues. While federated learning (FL) has emerged as a framework for model training without requiring direct data sharing and exchange, effectively modeling the complex spatio-temporal dependencies to improve forecasting capabilities still remains an open problem. On the other hand, state-of-the-art spatio-temporal forecasting models assume unfettered access to the data, neglecting constraints on data sharing. To bridge this gap, we propose a federated spatio-temporal model -- Cross-Node Federated Graph Neural Network (CNFGNN) -- which explicitly encodes the underlying graph structure using graph neural network (GNN)-based architecture under the constraint of cross-node federated learning, which requires that data in a network of nodes is generated locally on each node and remains decentralized. CNFGNN operates by disentangling the temporal dynamics modeling on devices and spatial dynamics on the server, utilizing alternating optimization to reduce the communication cost, facilitating computations on the edge devices. Experiments on the traffic flow forecasting task show that CNFGNN achieves the best forecasting performance in both transductive and inductive learning settings with no extra computation cost on edge devices, while incurring modest communication cost.

Graph neural networks provide a powerful toolkit for embedding real-world graphs into low-dimensional spaces according to specific tasks. Up to now, there have been several surveys on this topic. However, they usually lay emphasis on different angles so that the readers can not see a panorama of the graph neural networks. This survey aims to overcome this limitation, and provide a comprehensive review on the graph neural networks. First of all, we provide a novel taxonomy for the graph neural networks, and then refer to up to 400 relevant literatures to show the panorama of the graph neural networks. All of them are classified into the corresponding categories. In order to drive the graph neural networks into a new stage, we summarize four future research directions so as to overcome the facing challenges. It is expected that more and more scholars can understand and exploit the graph neural networks, and use them in their research community.

北京阿比特科技有限公司