亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The increasing rise in artificial intelligence has made the use of imprecise language in computer programs like ChatGPT more prominent. Fuzzy logic addresses this form of imprecise language by introducing the concept of fuzzy sets, where elements belong to the set with a certain membership value (called the fuzzy value). This paper combines fuzzy data with relational algebra to provide the mathematical foundation for a fuzzy database querying language, describing various useful operations in the language of linear algebra and multiset operations, in addition to rigorously proving key identities.

相關內容

在數學中,多重集是對集的概念的修改,與集不同,集對每個元素允許多個實例。 為每個元素提供的實例的正整數個數稱為該元素在多重集中的多重性。 結果存在無限多個多重集,它們僅包含元素a和b,但因元素的多樣性而變化:(1)集{a,b}僅包含元素a和b,當將{a,b}視為多集時,每個元素的多重性為1;(2)在多重集{a,a,b}中,元素a具有多重性2,而b具有多重性1;(3)在多集{a,a,a,b,b,b}中,a和b都具有多重性3。

This work pioneers evaluating emergent planning capabilities based on situational awareness in large language models. We contribute (i) novel benchmarks and metrics for standardized assessment; (ii) a unique dataset to spur progress; and (iii) demonstrations that prompting and multi-agent schemes significantly enhance planning performance in context-sensitive planning tasks. Positioning this within a situated agent and automated planning research, we highlight inherent reliability challenges--efficiently mapping world states to actions without environmental guidance remains open despite simulated domain advances. Although out-of-scope, limitations around validation methodology and data availability indicate exciting directions, including fine-tuning on expanded planning corpora and optimizations for triggering fast latent planning. By conclusively demonstrating current methods' promise and limitations via rigorous comparison, we catalyze investigating reliable goal-directed reasoning for situated agents.

Conformal Prediction (CP) stands out as a robust framework for uncertainty quantification, which is crucial for ensuring the reliability of predictions. However, common CP methods heavily rely on data exchangeability, a condition often violated in practice. Existing approaches for tackling non-exchangeability lead to methods that are not computable beyond the simplest examples. This work introduces a new efficient approach to CP that produces provably valid confidence sets for fairly general non-exchangeable data distributions. We illustrate the general theory with applications to the challenging setting of federated learning under data heterogeneity between agents. Our method allows constructing provably valid personalized prediction sets for agents in a fully federated way. The effectiveness of the proposed method is demonstrated in a series of experiments on real-world datasets.

With the significant successes of large language models (LLMs) in many natural language processing tasks, there is growing interest among researchers in exploring LLMs for novel recommender systems. However, we have observed that directly using LLMs as a recommender system is usually unstable due to its inherent position bias. To this end, we introduce exploratory research and find consistent patterns of positional bias in LLMs that influence the performance of recommendation across a range of scenarios. Then, we propose a Bayesian probabilistic framework, STELLA (Stable LLM for Recommendation), which involves a two-stage pipeline. During the first probing stage, we identify patterns in a transition matrix using a probing detection dataset. And in the second recommendation stage, a Bayesian strategy is employed to adjust the biased output of LLMs with an entropy indicator. Therefore, our framework can capitalize on existing pattern information to calibrate instability of LLMs, and enhance recommendation performance. Finally, extensive experiments clearly validate the effectiveness of our framework.

This work focuses on the problem of visual target navigation, which is very important for autonomous robots as it is closely related to high-level tasks. To find a special object in unknown environments, classical and learning-based approaches are fundamental components of navigation that have been investigated thoroughly in the past. However, due to the difficulty in the representation of complicated scenes and the learning of the navigation policy, previous methods are still not adequate, especially for large unknown scenes. Hence, we propose a novel framework for visual target navigation using the frontier semantic policy. In this proposed framework, the semantic map and the frontier map are built from the current observation of the environment. Using the features of the maps and object category, deep reinforcement learning enables to learn a frontier semantic policy which can be used to select a frontier cell as a long-term goal to explore the environment efficiently. Experiments on Gibson and Habitat-Matterport 3D (HM3D) demonstrate that the proposed framework significantly outperforms existing map-based methods in terms of success rate and efficiency. Ablation analysis also indicates that the proposed approach learns a more efficient exploration policy based on the frontiers. A demonstration is provided to verify the applicability of applying our model to real-world transfer. The supplementary video and code can be accessed via the following link: //sites.google.com/view/fsevn.

The rapid advancement of large language models has revolutionized various applications but also raised crucial concerns about their potential to perpetuate biases and unfairness when deployed in social media contexts. Evaluating LLMs' potential biases and fairness has become crucial, as existing methods rely on limited prompts focusing on just a few groups, lacking a comprehensive categorical perspective. In this paper, we propose evaluating LLM biases from a group fairness lens using a novel hierarchical schema characterizing diverse social groups. Specifically, we construct a dataset, GFair, encapsulating target-attribute combinations across multiple dimensions. In addition, we introduce statement organization, a new open-ended text generation task, to uncover complex biases in LLMs. Extensive evaluations of popular LLMs reveal inherent safety concerns. To mitigate the biases of LLM from a group fairness perspective, we pioneer a novel chain-of-thought method GF-Think to mitigate biases of LLMs from a group fairness perspective. Experimental results demonstrate its efficacy in mitigating bias in LLMs to achieve fairness.

Recent progress in artificial intelligence (AI), particularly in the domain of large language models (LLMs), has resulted in powerful and versatile dual-use systems. This intelligence can be put towards a wide variety of beneficial tasks, yet it can also be used to cause harm. This study explores one such harm by examining how LLMs can be used for spear phishing, a form of cybercrime that involves manipulating targets into divulging sensitive information. I first explore LLMs' ability to assist with the reconnaissance and message generation stages of a spear phishing attack, where I find that LLMs are capable of assisting with the email generation phase of a spear phishing attack. To explore how LLMs could potentially be harnessed to scale spear phishing campaigns, I then create unique spear phishing messages for over 600 British Members of Parliament using OpenAI's GPT-3.5 and GPT-4 models. My findings provide some evidence that these messages are not only realistic but also cost-effective, with each email costing only a fraction of a cent to generate. Next, I demonstrate how basic prompt engineering can circumvent safeguards installed in LLMs, highlighting the need for further research into robust interventions that can help prevent models from being misused. To further address these evolving risks, I explore two potential solutions: structured access schemes, such as application programming interfaces, and LLM-based defensive systems.

Nash equilibrium is often heralded as a guiding principle for rational decision-making in strategic interactions. However, it is well-known that Nash equilibrium sometimes fails as a reliable predictor of outcomes, with two of the most notable issues being the fact that it is not resilient to collusion and that there may be multiple Nash equilibria in a single game. In this paper, we show that a mechanism designer can get around these two issues for free by expanding the action sets of the original game. More precisely, given a normal-form or Bayesian game $\Gamma$ and a Nash equilibrium $\vec{\sigma}$ in $\Gamma$, a mechanism designer can construct a new game $\Gamma^{\vec{\sigma}}$ by expanding the action set of each player and defining appropriate utilities in the action profiles that were not already in the original game. We show that the designer can construct $\Gamma^{\vec{\sigma}}$ in such a way that (a) $\vec{\sigma}$ is a semi-strong Nash equilibrium of $\Gamma^{\vec{\sigma}}$, and (b) $\vec{\sigma}$ Pareto-dominates or quasi Pareto-dominates all other Nash equilibria of $\Gamma^{\vec{\sigma}}$.

The DARPA Lifelong Learning Machines (L2M) program seeks to yield advances in artificial intelligence (AI) systems so that they are capable of learning (and improving) continuously, leveraging data on one task to improve performance on another, and doing so in a computationally sustainable way. Performers on this program developed systems capable of performing a diverse range of functions, including autonomous driving, real-time strategy, and drone simulation. These systems featured a diverse range of characteristics (e.g., task structure, lifetime duration), and an immediate challenge faced by the program's testing and evaluation team was measuring system performance across these different settings. This document, developed in close collaboration with DARPA and the program performers, outlines a formalism for constructing and characterizing the performance of agents performing lifelong learning scenarios.

Sequential recommendation aims to leverage users' historical behaviors to predict their next interaction. Existing works have not yet addressed two main challenges in sequential recommendation. First, user behaviors in their rich historical sequences are often implicit and noisy preference signals, they cannot sufficiently reflect users' actual preferences. In addition, users' dynamic preferences often change rapidly over time, and hence it is difficult to capture user patterns in their historical sequences. In this work, we propose a graph neural network model called SURGE (short for SeqUential Recommendation with Graph neural nEtworks) to address these two issues. Specifically, SURGE integrates different types of preferences in long-term user behaviors into clusters in the graph by re-constructing loose item sequences into tight item-item interest graphs based on metric learning. This helps explicitly distinguish users' core interests, by forming dense clusters in the interest graph. Then, we perform cluster-aware and query-aware graph convolutional propagation and graph pooling on the constructed graph. It dynamically fuses and extracts users' current activated core interests from noisy user behavior sequences. We conduct extensive experiments on both public and proprietary industrial datasets. Experimental results demonstrate significant performance gains of our proposed method compared to state-of-the-art methods. Further studies on sequence length confirm that our method can model long behavioral sequences effectively and efficiently.

Link prediction for knowledge graphs is the task of predicting missing relationships between entities. Previous work on link prediction has focused on shallow, fast models which can scale to large knowledge graphs. However, these models learn less expressive features than deep, multi-layer models -- which potentially limits performance. In this work, we introduce ConvE, a multi-layer convolutional network model for link prediction, and report state-of-the-art results for several established datasets. We also show that the model is highly parameter efficient, yielding the same performance as DistMult and R-GCN with 8x and 17x fewer parameters. Analysis of our model suggests that it is particularly effective at modelling nodes with high indegree -- which are common in highly-connected, complex knowledge graphs such as Freebase and YAGO3. In addition, it has been noted that the WN18 and FB15k datasets suffer from test set leakage, due to inverse relations from the training set being present in the test set -- however, the extent of this issue has so far not been quantified. We find this problem to be severe: a simple rule-based model can achieve state-of-the-art results on both WN18 and FB15k. To ensure that models are evaluated on datasets where simply exploiting inverse relations cannot yield competitive results, we investigate and validate several commonly used datasets -- deriving robust variants where necessary. We then perform experiments on these robust datasets for our own and several previously proposed models, and find that ConvE achieves state-of-the-art Mean Reciprocal Rank across all datasets.

北京阿比特科技有限公司