On the Boolean domain, there is a class of symmetric signatures called ``Fibonacci gates" for which a beautiful P-time combinatorial algorithm has been designed for the corresponding $\operatorname{Holant}^*$ problems. In this work, we give a combinatorial view for $\operatorname{Holant}^*(\mathcal{F})$ problems on a domain of size 3 where $\mathcal{F}$ is a set of arity 3 functions with inputs taking values on the domain of size 3 and the functions share some common properties. The combinatorial view can also be extended to the domain of size 4. Specifically, we extend the definition of "Fibonacci gates" to the domain of size 3 and the domain of size 4. Moreover, we give the corresponding combinatorial algorithms.
An adaptive model for the description of flows in highly heterogeneous porous media is developed in~\cite{FP21,FP23}. There, depending on the magnitude of the fluid's velocity, the constitutive law linking velocity and pressure gradient is selected between two possible options, one better adapted to slow motion and the other to fast motion. We propose here to validate further this adaptive approach by means of more extensive numerical experiments, including a three-dimensional case, as well as to use such approach to determine a partition of the domain into slow- and fast-flow regions.
We study the weak convergence behaviour of the Leimkuhler--Matthews method, a non-Markovian Euler-type scheme with the same computational cost as the Euler scheme, for the approximation of the stationary distribution of a one-dimensional McKean--Vlasov Stochastic Differential Equation (MV-SDE). The particular class under study is known as mean-field (overdamped) Langevin equations (MFL). We provide weak and strong error results for the scheme in both finite and infinite time. We work under a strong convexity assumption. Based on a careful analysis of the variation processes and the Kolmogorov backward equation for the particle system associated with the MV-SDE, we show that the method attains a higher-order approximation accuracy in the long-time limit (of weak order convergence rate $3/2$) than the standard Euler method (of weak order $1$). While we use an interacting particle system (IPS) to approximate the MV-SDE, we show the convergence rate is independent of the dimension of the IPS and this includes establishing uniform-in-time decay estimates for moments of the IPS, the Kolmogorov backward equation and their derivatives. The theoretical findings are supported by numerical tests.
Differential privacy has emerged as an significant cornerstone in the realm of scientific hypothesis testing utilizing confidential data. In reporting scientific discoveries, Bayesian tests are widely adopted since they effectively circumnavigate the key criticisms of P-values, namely, lack of interpretability and inability to quantify evidence in support of the competing hypotheses. We present a novel differentially private Bayesian hypotheses testing framework that arise naturally under a principled data generative mechanism, inherently maintaining the interpretability of the resulting inferences. Furthermore, by focusing on differentially private Bayes factors based on widely used test statistics, we circumvent the need to model the complete data generative mechanism and ensure substantial computational benefits. We also provide a set of sufficient conditions to establish results on Bayes factor consistency under the proposed framework. The utility of the devised technology is showcased via several numerical experiments.
Exploring the semantic context in scene images is essential for indoor scene recognition. However, due to the diverse intra-class spatial layouts and the coexisting inter-class objects, modeling contextual relationships to adapt various image characteristics is a great challenge. Existing contextual modeling methods for scene recognition exhibit two limitations: 1) They typically model only one kind of spatial relationship among objects within scenes in an artificially predefined manner, with limited exploration of diverse spatial layouts. 2) They often overlook the differences in coexisting objects across different scenes, suppressing scene recognition performance. To overcome these limitations, we propose SpaCoNet, which simultaneously models Spatial relation and Co-occurrence of objects guided by semantic segmentation. Firstly, the Semantic Spatial Relation Module (SSRM) is constructed to model scene spatial features. With the help of semantic segmentation, this module decouples the spatial information from the scene image and thoroughly explores all spatial relationships among objects in an end-to-end manner. Secondly, both spatial features from the SSRM and deep features from the Image Feature Extraction Module are allocated to each object, so as to distinguish the coexisting object across different scenes. Finally, utilizing the discriminative features above, we design a Global-Local Dependency Module to explore the long-range co-occurrence among objects, and further generate a semantic-guided feature representation for indoor scene recognition. Experimental results on three widely used scene datasets demonstrate the effectiveness and generality of the proposed method.
We consider the problem of linearly ordered (LO) coloring of hypergraphs. A hypergraph has an LO coloring if there is a vertex coloring, using a set of ordered colors, so that (i) no edge is monochromatic, and (ii) each edge has a unique maximum color. It is an open question as to whether or not a 2-LO colorable 3-uniform hypergraph can be LO colored with 3 colors in polynomial time. Nakajima and Zivn\'{y} recently gave a polynomial-time algorithm to color such hypergraphs with $\widetilde{O}(n^{1/3})$ colors and asked if SDP methods can be used directly to obtain improved bounds. Our main result is to show how to use SDP-based rounding methods to produce an LO coloring with $\widetilde{O}(n^{1/5})$ colors for such hypergraphs. We first show that we can reduce the problem to cases with highly structured SDP solutions, which we call balanced hypergraphs. Then we show how to apply classic SDP-rounding tools in this case. We believe that the reduction to balanced hypergraphs is novel and could be of independent interest.
Considered herein is a class of Boussinesq systems of Bona-Smith type that describe water waves in bounded two-dimensional domains with slip-wall boundary conditions and variable bottom topography. Such boundary conditions are necessary in situations involving water waves in channels, ports, and generally in basins with solid boundaries. We prove that, given appropriate initial conditions, the corresponding initial-boundary value problems have unique solutions locally in time, which is a fundamental property of deterministic mathematical modeling. Moreover, we demonstrate that the systems under consideration adhere to three basic conservation laws for water waves: mass, vorticity, and energy conservation. The theoretical analysis of these specific Boussinesq systems leads to a conservative mixed finite element formulation. Using explicit, relaxation Runge-Kutta methods for the discretization in time, we devise a fully discrete scheme for the numerical solution of initial-boundary value problems with slip-wall conditions, preserving mass, vorticity, and energy. Finally, we present a series of challenging numerical experiments to assess the applicability of the new numerical model.
Biological nervous systems constitute important sources of inspiration towards computers that are faster, cheaper, and more energy efficient. Neuromorphic disciplines view the brain as a coevolved system, simultaneously optimizing the hardware and the algorithms running on it. There are clear efficiency gains when bringing the computations into a physical substrate, but we presently lack theories to guide efficient implementations. Here, we present a principled computational model for neuromorphic systems in terms of spatio-temporal receptive fields, based on affine Gaussian kernels over space and leaky-integrator and leaky integrate-and-fire models over time. Our theory is provably covariant to spatial affine and temporal scaling transformations, and with close similarities to the visual processing in mammalian brains. We use these spatio-temporal receptive fields as a prior in an event-based vision task, and show that this improves the training of spiking networks, which otherwise is known as problematic for event-based vision. This work combines efforts within scale-space theory and computational neuroscience to identify theoretically well-founded ways to process spatio-temporal signals in neuromorphic systems. Our contributions are immediately relevant for signal processing and event-based vision, and can be extended to other processing tasks over space and time, such as memory and control.
Purpose: Radiologists are tasked with visually scrutinizing large amounts of data produced by 3D volumetric imaging modalities. Small signals can go unnoticed during the 3d search because they are hard to detect in the visual periphery. Recent advances in machine learning and computer vision have led to effective computer-aided detection (CADe) support systems with the potential to mitigate perceptual errors. Approach: Sixteen non-expert observers searched through digital breast tomosynthesis (DBT) phantoms and single cross-sectional slices of the DBT phantoms. The 3D/2D searches occurred with and without a convolutional neural network (CNN)-based CADe support system. The model provided observers with bounding boxes superimposed on the image stimuli while they looked for a small microcalcification signal and a large mass signal. Eye gaze positions were recorded and correlated with changes in the area under the ROC curve (AUC). Results: The CNN-CADe improved the 3D search for the small microcalcification signal (delta AUC = 0.098, p = 0.0002) and the 2D search for the large mass signal (delta AUC = 0.076, p = 0.002). The CNN-CADe benefit in 3D for the small signal was markedly greater than in 2D (delta delta AUC = 0.066, p = 0.035). Analysis of individual differences suggests that those who explored the least with eye movements benefited the most from the CNN-CADe (r = -0.528, p = 0.036). However, for the large signal, the 2D benefit was not significantly greater than the 3D benefit (delta delta AUC = 0.033, p = 0.133). Conclusion: The CNN-CADe brings unique performance benefits to the 3D (vs. 2D) search of small signals by reducing errors caused by the under-exploration of the volumetric data.
State transition algorithm (STA) is a metaheuristic method for global optimization. Recently, a modified STA named parameter optimal state transition algorithm (POSTA) is proposed. In POSTA, the performance of expansion operator, rotation operator and axesion operator is optimized through a parameter selection mechanism. But due to the insufficient utilization of historical information, POSTA still suffers from slow convergence speed and low solution accuracy on specific problems. To make better use of the historical information, Nelder-Mead (NM) simplex search and quadratic interpolation (QI) are integrated into POSTA. The enhanced POSTA is tested against 14 benchmark functions with 20-D, 30-D and 50-D space. An experimental comparison with several competitive metaheuristic methods demonstrates the effectiveness of the proposed method.
Recent advances in 3D fully convolutional networks (FCN) have made it feasible to produce dense voxel-wise predictions of volumetric images. In this work, we show that a multi-class 3D FCN trained on manually labeled CT scans of several anatomical structures (ranging from the large organs to thin vessels) can achieve competitive segmentation results, while avoiding the need for handcrafting features or training class-specific models. To this end, we propose a two-stage, coarse-to-fine approach that will first use a 3D FCN to roughly define a candidate region, which will then be used as input to a second 3D FCN. This reduces the number of voxels the second FCN has to classify to ~10% and allows it to focus on more detailed segmentation of the organs and vessels. We utilize training and validation sets consisting of 331 clinical CT images and test our models on a completely unseen data collection acquired at a different hospital that includes 150 CT scans, targeting three anatomical organs (liver, spleen, and pancreas). In challenging organs such as the pancreas, our cascaded approach improves the mean Dice score from 68.5 to 82.2%, achieving the highest reported average score on this dataset. We compare with a 2D FCN method on a separate dataset of 240 CT scans with 18 classes and achieve a significantly higher performance in small organs and vessels. Furthermore, we explore fine-tuning our models to different datasets. Our experiments illustrate the promise and robustness of current 3D FCN based semantic segmentation of medical images, achieving state-of-the-art results. Our code and trained models are available for download: //github.com/holgerroth/3Dunet_abdomen_cascade.