亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Equivariant neural networks have considerably improved the accuracy and data-efficiency of predictions of molecular properties. Building on this success, we introduce EquiReact, an equivariant neural network to infer properties of chemical reactions, built from three-dimensional structures of reactants and products. We illustrate its competitive performance on the prediction of activation barriers on the GDB7-22-TS, Cyclo-23-TS and Proparg-21-TS datasets with different regimes according to the inclusion of atom-mapping information. We show that, compared to state-of-the-art models for reaction property prediction, EquiReact offers: (i) a flexible model with reduced sensitivity between atom-mapping regimes, (ii) better extrapolation capabilities to unseen chemistries, (iii) impressive prediction errors for datasets exhibiting subtle variations in three-dimensional geometries of reactants/products, (iv) reduced sensitivity to geometry quality and (iv) excellent data efficiency.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國(guo)際網絡(luo)會議。 Publisher:IFIP。 SIT:

Solving high dimensional partial differential equations (PDEs) has historically posed a considerable challenge when utilizing conventional numerical methods, such as those involving domain meshes. Recent advancements in the field have seen the emergence of neural PDE solvers, leveraging deep networks to effectively tackle high dimensional PDE problems. This study introduces Inf-SupNet, a model-based unsupervised learning approach designed to acquire solutions for a specific category of elliptic PDEs. The fundamental concept behind Inf-SupNet involves incorporating the inf-sup formulation of the underlying PDE into the loss function. The analysis reveals that the global solution error can be bounded by the sum of three distinct errors: the numerical integration error, the duality gap of the loss function (training error), and the neural network approximation error for functions within Sobolev spaces. To validate the efficacy of the proposed method, numerical experiments conducted in high dimensions demonstrate its stability and accuracy across various boundary conditions, as well as for both semi-linear and nonlinear PDEs.

It is well established that to ensure or certify the robustness of a neural network, its Lipschitz constant plays a prominent role. However, its calculation is NP-hard. In this note, by taking into account activation regions at each layer as new constraints, we propose new quadratically constrained MIP formulations for the neural network Lipschitz estimation problem. The solutions of these problems give lower bounds and upper bounds of the Lipschitz constant and we detail conditions when they coincide with the exact Lipschitz constant.

Artificial neural networks suffer from catastrophic forgetting when they are sequentially trained on multiple tasks. Many continual learning (CL) strategies are trying to overcome this problem. One of the most effective is the hypernetwork-based approach. The hypernetwork generates the weights of a target model based on the task's identity. The model's main limitation is that, in practice, the hypernetwork can produce completely different architectures for subsequent tasks. To solve such a problem, we use the lottery ticket hypothesis, which postulates the existence of sparse subnetworks, named winning tickets, that preserve the performance of a whole network. In the paper, we propose a method called HyperMask, which trains a single network for all CL tasks. The hypernetwork produces semi-binary masks to obtain target subnetworks dedicated to consecutive tasks. Moreover, due to the lottery ticket hypothesis, we can use a single network with weighted subnets. Depending on the task, the importance of some weights may be dynamically enhanced while others may be weakened. HyperMask achieves competitive results in several CL datasets and, in some scenarios, goes beyond the state-of-the-art scores, both with derived and unknown task identities.

Conventional neural network elastoplasticity models are often perceived as lacking interpretability. This paper introduces a two-step machine learning approach that returns mathematical models interpretable by human experts. In particular, we introduce a surrogate model where yield surfaces are expressed in terms of a set of single-variable feature mappings obtained from supervised learning. A post-processing step is then used to re-interpret the set of single-variable neural network mapping functions into mathematical form through symbolic regression. This divide-and-conquer approach provides several important advantages. First, it enables us to overcome the scaling issue of symbolic regression algorithms. From a practical perspective, it enhances the portability of learned models for partial differential equation solvers written in different programming languages. Finally, it enables us to have a concrete understanding of the attributes of the materials, such as convexity and symmetries of models, through automated derivations and reasoning. Numerical examples have been provided, along with an open-source code to enable third-party validation.

Despite substantial efforts, neural network interpretability remains an elusive goal, with previous research failing to provide succinct explanations of most single neurons' impact on the network output. This limitation is due to the polysemantic nature of most neurons, whereby a given neuron is involved in multiple unrelated network states, complicating the interpretation of that neuron. In this paper, we apply tools developed in neuroscience and information theory to propose both a novel practical approach to network interpretability and theoretical insights into polysemanticity and the density of codes. We infer levels of redundancy in the network's code by inspecting the eigenspectrum of the activation's covariance matrix. Furthermore, we show how random projections can reveal whether a network exhibits a smooth or non-differentiable code and hence how interpretable the code is. This same framework explains the advantages of polysemantic neurons to learning performance and explains trends found in recent results by Elhage et al.~(2022). Our approach advances the pursuit of interpretability in neural networks, providing insights into their underlying structure and suggesting new avenues for circuit-level interpretability.

SDRDPy is a desktop application that allows experts an intuitive graphic and tabular representation of the knowledge extracted by any supervised descriptive rule discovery algorithm. The application is able to provide an analysis of the data showing the relevant information of the data set and the relationship between the rules, data and the quality measures associated for each rule regardless of the tool where algorithm has been executed. All of the information is presented in a user-friendly application in order to facilitate expert analysis and also the exportation of reports in different formats.

In statistical inference, retrodiction is the act of inferring potential causes in the past based on knowledge of the effects in the present and the dynamics leading to the present. Retrodiction is applicable even when the dynamics is not reversible, and it agrees with the reverse dynamics when it exists, so that retrodiction may be viewed as an extension of inversion, i.e., time-reversal. Recently, an axiomatic definition of retrodiction has been made in a way that is applicable to both classical and quantum probability using ideas from category theory. Almost simultaneously, a framework for information flow in in terms of semicartesian categories has been proposed in the setting of categorical probability theory. Here, we formulate a general definition of retrodiction to add to the information flow axioms in semicartesian categories, thus providing an abstract framework for retrodiction beyond classical and quantum probability theory. More precisely, we extend Bayesian inference, and more generally Jeffrey's probability kinematics, to arbitrary semicartesian categories.

Artificial neural networks thrive in solving the classification problem for a particular rigid task, acquiring knowledge through generalized learning behaviour from a distinct training phase. The resulting network resembles a static entity of knowledge, with endeavours to extend this knowledge without targeting the original task resulting in a catastrophic forgetting. Continual learning shifts this paradigm towards networks that can continually accumulate knowledge over different tasks without the need to retrain from scratch. We focus on task incremental classification, where tasks arrive sequentially and are delineated by clear boundaries. Our main contributions concern 1) a taxonomy and extensive overview of the state-of-the-art, 2) a novel framework to continually determine the stability-plasticity trade-off of the continual learner, 3) a comprehensive experimental comparison of 11 state-of-the-art continual learning methods and 4 baselines. We empirically scrutinize method strengths and weaknesses on three benchmarks, considering Tiny Imagenet and large-scale unbalanced iNaturalist and a sequence of recognition datasets. We study the influence of model capacity, weight decay and dropout regularization, and the order in which the tasks are presented, and qualitatively compare methods in terms of required memory, computation time, and storage.

When and why can a neural network be successfully trained? This article provides an overview of optimization algorithms and theory for training neural networks. First, we discuss the issue of gradient explosion/vanishing and the more general issue of undesirable spectrum, and then discuss practical solutions including careful initialization and normalization methods. Second, we review generic optimization methods used in training neural networks, such as SGD, adaptive gradient methods and distributed methods, and theoretical results for these algorithms. Third, we review existing research on the global issues of neural network training, including results on bad local minima, mode connectivity, lottery ticket hypothesis and infinite-width analysis.

Graph representation learning for hypergraphs can be used to extract patterns among higher-order interactions that are critically important in many real world problems. Current approaches designed for hypergraphs, however, are unable to handle different types of hypergraphs and are typically not generic for various learning tasks. Indeed, models that can predict variable-sized heterogeneous hyperedges have not been available. Here we develop a new self-attention based graph neural network called Hyper-SAGNN applicable to homogeneous and heterogeneous hypergraphs with variable hyperedge sizes. We perform extensive evaluations on multiple datasets, including four benchmark network datasets and two single-cell Hi-C datasets in genomics. We demonstrate that Hyper-SAGNN significantly outperforms the state-of-the-art methods on traditional tasks while also achieving great performance on a new task called outsider identification. Hyper-SAGNN will be useful for graph representation learning to uncover complex higher-order interactions in different applications.

北京阿比特科技有限公司