The paper presents a spectral representation for general type two-sided discrete time signals from $\ell_\infty$, i.e for all bounded discrete time signals, including signals that do not vanish at $\pm\infty$. This representation allows to extend on the general type signals from $\ell_\infty$ the notions of transfer functions, spectrum gaps, and filters, and to obtain some frequency conditions of predictability and data recoverability.
In order to compute the Fourier transform of a function $f$ on the real line numerically, one samples $f$ on a grid and then takes the discrete Fourier transform. We derive exact error estimates for this procedure in terms of the decay and smoothness of $f$. The analysis provides a new recipe of how to relate the number of samples, the sampling interval, and the grid size.
Several mixed-effects models for longitudinal data have been proposed to accommodate the non-linearity of late-life cognitive trajectories and assess the putative influence of covariates on it. No prior research provides a side-by-side examination of these models to offer guidance on their proper application and interpretation. In this work, we examined five statistical approaches previously used to answer research questions related to non-linear changes in cognitive aging: the linear mixed model (LMM) with a quadratic term, LMM with splines, the functional mixed model, the piecewise linear mixed model, and the sigmoidal mixed model. We first theoretically describe the models. Next, using data from two prospective cohorts with annual cognitive testing, we compared the interpretation of the models by investigating associations of education on cognitive change before death. Lastly, we performed a simulation study to empirically evaluate the models and provide practical recommendations. Except for the LMM-quadratic, the fit of all models was generally adequate to capture non-linearity of cognitive change and models were relatively robust. Although spline-based models have no interpretable nonlinearity parameters, their convergence was easier to achieve, and they allow graphical interpretation. In contrast, piecewise and sigmoidal models, with interpretable non-linear parameters, may require more data to achieve convergence.
Chemical and biochemical reactions can exhibit surprisingly different behaviours from multiple steady-state solutions to oscillatory solutions and chaotic behaviours. Such behaviour has been of great interest to researchers for many decades. The Briggs-Rauscher, Belousov-Zhabotinskii and Bray-Liebhafsky reactions, for which periodic variations in concentrations can be visualized by changes in colour, are experimental examples of oscillating behaviour in chemical systems. These type of systems are modelled by a system of partial differential equations coupled by a nonlinearity. However, analysing the pattern, one may suspect that the dynamic is only generated by a finite number of spatial Fourier modes. In fluid dynamics, it is shown that for large times, the solution is determined by a finite number of spatial Fourier modes, called determining modes. In the article, we first introduce the concept of determining modes and show that, indeed, it is sufficient to characterise the dynamic by only a finite number of spatial Fourier modes. In particular, we analyse the exact number of the determining modes of $u$ and $v$, where the couple $(u,v)$ solves the following stochastic system \begin{equation*} \partial_t{u}(t) = r_1\Delta u(t) -\alpha_1u(t)- \gamma_1u(t)v^2(t) + f(1 - u(t)) + g(t),\quad \partial_t{v}(t) = r_2\Delta v(t) -\alpha_2v(t) + \gamma_2 u(t)v^2(t) + h(t),\quad u(0) = u_0,\;v(0) = v_0, \end{equation*} where $r_1,r_2,\gamma_1,\gamma_2>0$, $\alpha_1,\alpha_2 \ge 0$ and $g,h$ are time depending mappings specified later.
We explore the $\textit{average-case deterministic query complexity}$ of boolean functions under the $\textit{uniform distribution}$, denoted by $\mathrm{D}_\mathrm{ave}(f)$, the minimum average depth of zero-error decision tree computing a boolean function $f$. This measure found several applications across diverse fields. We study $\mathrm{D}_\mathrm{ave}(f)$ of several common functions, including penalty shoot-out functions, symmetric functions, linear threshold functions and tribes functions. Let $\mathrm{wt}(f)$ denote the number of the inputs on which $f$ outputs $1$. We prove that $\mathrm{D}_\mathrm{ave}(f) \le \log \frac{\mathrm{wt}(f)}{\log n} + O\left(\log \log \frac{\mathrm{wt}(f)}{\log n}\right)$ when $\mathrm{wt}(f) \ge 4 \log n$ (otherwise, $\mathrm{D}_\mathrm{ave}(f) = O(1)$), and that for almost all fixed-weight functions, $\mathrm{D}_\mathrm{ave}(f) \geq \log \frac{\mathrm{wt}(f)}{\log n} - O\left( \log \log \frac{\mathrm{wt}(f)}{\log n}\right)$, which implies the tightness of the upper bound up to an additive logarithmic term. We also study $\mathrm{D}_\mathrm{ave}(f)$ of circuits. Using H\r{a}stad's switching lemma or Rossman's switching lemma [Comput. Complexity Conf. 137, 2019], one can derive upper bounds $\mathrm{D}_\mathrm{ave}(f) \leq n\left(1 - \frac{1}{O(k)}\right)$ for width-$k$ CNFs/DNFs and $\mathrm{D}_\mathrm{ave}(f) \leq n\left(1 - \frac{1}{O(\log s)}\right)$ for size-$s$ CNFs/DNFs, respectively. For any $w \ge 1.1 \log n$, we prove the existence of some width-$w$ size-$(2^w/w)$ DNF formula with $\mathrm{D}_\mathrm{ave} (f) = n \left(1 - \frac{\log n}{\Theta(w)}\right)$, providing evidence on the tightness of the switching lemmas.
We propose an efficient algorithm for matching two correlated Erd\H{o}s--R\'enyi graphs with $n$ vertices whose edges are correlated through a latent vertex correspondence. When the edge density $q= n^{- \alpha+o(1)}$ for a constant $\alpha \in [0,1)$, we show that our algorithm has polynomial running time and succeeds to recover the latent matching as long as the edge correlation is non-vanishing. This is closely related to our previous work on a polynomial-time algorithm that matches two Gaussian Wigner matrices with non-vanishing correlation, and provides the first polynomial-time random graph matching algorithm (regardless of the regime of $q$) when the edge correlation is below the square root of the Otter's constant (which is $\approx 0.338$).
This study addresses a class of linear mixed-integer programming (MILP) problems that involve uncertainty in the objective function parameters. The parameters are assumed to form a random vector, whose probability distribution can only be observed through a finite training data set. Unlike most of the related studies in the literature, we also consider uncertainty in the underlying data set. The data uncertainty is described by a set of linear constraints for each random sample, and the uncertainty in the distribution (for a fixed realization of data) is defined using a type-1 Wasserstein ball centered at the empirical distribution of the data. The overall problem is formulated as a three-level distributionally robust optimization (DRO) problem. First, we prove that the three-level problem admits a single-level MILP reformulation, if the class of loss functions is restricted to biaffine functions. Secondly, it turns out that for several particular forms of data uncertainty, the outlined problem can be solved reasonably fast by leveraging the nominal MILP problem. Finally, we conduct a computational study, where the out-of-sample performance of our model and computational complexity of the proposed MILP reformulation are explored numerically for several application domains.
We introduce a single-set axiomatisation of cubical $\omega$-categories, including connections and inverses. We justify these axioms by establishing a series of equivalences between the category of single-set cubical $\omega$-categories, and their variants with connections and inverses, and the corresponding cubical $\omega$-categories. We also report on the formalisation of cubical $\omega$-categories with the Isabelle/HOL proof assistant, which has been instrumental in finding the single-set axioms.
This paper develops a two-stage stochastic model to investigate evolution of random fields on the unit sphere $\bS^2$ in $\R^3$. The model is defined by a time-fractional stochastic diffusion equation on $\bS^2$ governed by a diffusion operator with the time-fractional derivative defined in the Riemann-Liouville sense. In the first stage, the model is characterized by a homogeneous problem with an isotropic Gaussian random field on $\bS^2$ as an initial condition. In the second stage, the model becomes an inhomogeneous problem driven by a time-delayed Brownian motion on $\bS^2$. The solution to the model is given in the form of an expansion in terms of complex spherical harmonics. An approximation to the solution is given by truncating the expansion of the solution at degree $L\geq1$. The rate of convergence of the truncation errors as a function of $L$ and the mean square errors as a function of time are also derived. It is shown that the convergence rates depend not only on the decay of the angular power spectrum of the driving noise and the initial condition, but also on the order of the fractional derivative. We study sample properties of the stochastic solution and show that the solution is an isotropic H\"{o}lder continuous random field. Numerical examples and simulations inspired by the cosmic microwave background (CMB) are given to illustrate the theoretical findings.
In this paper, we discuss tests for mean vector of high-dimensional data when the dimension $p$ is a function of sample size $n$. One of the tests, called the decomposite $T^{2}$-test, in the high-dimensional testing problem is constructed based on the estimation work of Ledoit and Wolf (2018), which is an optimal orthogonally equivariant estimator of the inverse of population covariance matrix under Stein loss function. The asymptotic distribution function of the test statistic is investigated under a sequence of local alternatives. The asymptotic relative efficiency is used to see whether a test is optimal and to perform the power comparisons of tests. An application of the decomposite $T^{2}$-test is in testing significance for the effect of monthly unlimited transport policy on public transportation, in which the data are taken from Taipei Metro System.
This paper presents a method for thematic agreement assessment of geospatial data products of different semantics and spatial granularities, which may be affected by spatial offsets between test and reference data. The proposed method uses a multi-scale framework allowing for a probabilistic evaluation whether thematic disagreement between datasets is induced by spatial offsets due to different nature of the datasets or not. We test our method using real-estate derived settlement locations and remote-sensing derived building footprint data.