亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

For a multi-robot team that collaboratively explores an unknown environment, it is of vital importance that collected information is efficiently shared among robots in order to support exploration and navigation tasks. Practical constraints of wireless channels, such as limited bandwidth, urge robots to carefully select information to be transmitted. In this paper, we consider the case where environmental information is modeled using a 3D Scene Graph, a hierarchical map representation that describes both geometric and semantic aspects of the environment. Then, we leverage graph-theoretic tools, namely graph spanners, to design greedy algorithms that efficiently compress 3D Scene Graphs with the aim of enabling communication between robots under bandwidth constraints. Our compression algorithms are navigation-oriented in that they are designed to approximately preserve shortest paths between locations of interest, while meeting a user-specified communication budget constraint. The effectiveness of the proposed algorithms is demonstrated in synthetic robot navigation experiments in a realistic simulator. A video abstract is available at //youtu.be/nKYXU5VC6A8.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · 表示 · TOOLS · 機器人 · Vision ·
2023 年 9 月 22 日

Enriching the robot representation of the operational environment is a challenging task that aims at bridging the gap between low-level sensor readings and high-level semantic understanding. Having a rich representation often requires computationally demanding architectures and pure point cloud based detection systems that struggle when dealing with everyday objects that have to be handled by the robot. To overcome these issues, we propose a graph-based representation that addresses this gap by providing a semantic representation of robot environments from multiple sources. In fact, to acquire information from the environment, the framework combines classical computer vision tools with modern computer vision cloud services, ensuring computational feasibility on onboard hardware. By incorporating an ontology hierarchy with over 800 object classes, the framework achieves cross-domain adaptability, eliminating the need for environment-specific tools. The proposed approach allows us to handle also small objects and integrate them into the semantic representation of the environment. The approach is implemented in the Robot Operating System (ROS) using the RViz visualizer for environment representation. This work is a first step towards the development of a general-purpose framework, to facilitate intuitive interaction and navigation across different domains.

Statisticians are not only one of the earliest professional adopters of data visualization, but also some of its most prolific users. Understanding how these professionals utilize visual representations in their analytic process may shed light on best practices for visual sensemaking. We present results from an interview study involving 18 professional statisticians (19.7 years average in the profession) on three aspects: (1) their use of visualization in their daily analytic work; (2) their mental models of inferential statistical processes; and (3) their design recommendations for how to best represent statistical inferences. Interview sessions consisted of discussing inferential statistics, eliciting participant sketches of suitable visual designs, and finally, a design intervention with our proposed visual designs. We analyzed interview transcripts using thematic analysis and open coding, deriving thematic codes on statistical mindset, analytic process, and analytic toolkit. The key findings for each aspect are as follows: (1) statisticians make extensive use of visualization during all phases of their work (and not just when reporting results); (2) their mental models of inferential methods tend to be mostly visually based; and (3) many statisticians abhor dichotomous thinking. The latter suggests that a multi-faceted visual display of inferential statistics that includes a visual indicator of analytically important effect sizes may help to balance the attributed epistemic power of traditional statistical testing with an awareness of the uncertainty of sensemaking.

Sparsifying the Transformer has garnered considerable interest, as training the Transformer is very computationally demanding. Prior efforts to sparsify the Transformer have either used a fixed pattern or data-driven approach to reduce the number of operations involving the computation of multi-head attention, which is the main bottleneck of the Transformer. However, existing methods suffer from inevitable problems, such as the potential loss of essential sequence features due to the uniform fixed pattern applied across all layers, and an increase in the model size resulting from the use of additional parameters to learn sparsity patterns in attention operations. In this paper, we propose a novel sparsification scheme for the Transformer that integrates convolution filters and the flood filling method to efficiently capture the layer-wise sparse pattern in attention operations. Our sparsification approach reduces the computational complexity and memory footprint of the Transformer during training. Efficient implementations of the layer-wise sparsified attention algorithm on GPUs are developed, demonstrating a new SPION that achieves up to 3.08X speedup over existing state-of-the-art sparse Transformer models, with better evaluation quality.

In an efficient and flexible human-robot collaborative work environment, a robot team member must be able to recognize both explicit requests and implied actions from human users. Identifying "what to do" in such cases requires an agent to have the ability to construct associations between objects, their actions, and the effect of actions on the environment. In this regard, semantic memory is being introduced to understand the explicit cues and their relationships with available objects and required skills to make "tea" and "sandwich". We have extended our previous hierarchical robot control architecture to add the capability to execute the most appropriate task based on both feedback from the user and the environmental context. To validate this system, two types of skills were implemented in the hierarchical task tree: 1) Tea making skills and 2) Sandwich making skills. During the conversation between the robot and the human, the robot was able to determine the hidden context using ontology and began to act accordingly. For instance, if the person says "I am thirsty" or "It is cold outside" the robot will start to perform the tea-making skill. In contrast, if the person says, "I am hungry" or "I need something to eat", the robot will make the sandwich. A humanoid robot Baxter was used for this experiment. We tested three scenarios with objects at different positions on the table for each skill. We observed that in all cases, the robot used only objects that were relevant to the skill.

Modern agile software projects are subject to constant change, making it essential to re-asses overall delay risk throughout the project life cycle. Existing effort estimation models are static and not able to incorporate changes occurring during project execution. In this paper, we propose a dynamic model for continuously predicting overall delay using delay patterns and Bayesian modeling. The model incorporates the context of the project phase and learns from changes in team performance over time. We apply the approach to real-world data from 4,040 epics and 270 teams at ING. An empirical evaluation of our approach and comparison to the state-of-the-art demonstrate significant improvements in predictive accuracy. The dynamic model consistently outperforms static approaches and the state-of-the-art, even during early project phases.

Wireless communications at high-frequency bands with large antenna arrays face challenges in beam management, which can potentially be improved by multimodality sensing information from cameras, LiDAR, radar, and GPS. In this paper, we present a multimodal transformer deep learning framework for sensing-assisted beam prediction. We employ a convolutional neural network to extract the features from a sequence of images, point clouds, and radar raw data sampled over time. At each convolutional layer, we use transformer encoders to learn the hidden relations between feature tokens from different modalities and time instances over abstraction space and produce encoded vectors for the next-level feature extraction. We train the model on a combination of different modalities with supervised learning. We try to enhance the model over imbalanced data by utilizing focal loss and exponential moving average. We also evaluate data processing and augmentation techniques such as image enhancement, segmentation, background filtering, multimodal data flipping, radar signal transformation, and GPS angle calibration. Experimental results show that our solution trained on image and GPS data produces the best distance-based accuracy of predicted beams at 78.44%, with effective generalization to unseen day scenarios near 73% and night scenarios over 84%. This outperforms using other modalities and arbitrary data processing techniques, which demonstrates the effectiveness of transformers with feature fusion in performing radio beam prediction from images and GPS. Furthermore, our solution could be pretrained from large sequences of multimodality wireless data, on fine-tuning for multiple downstream radio network tasks.

Programmers and researchers are increasingly developing surrogates of programs, models of a subset of the observable behavior of a given program, to solve a variety of software development challenges. Programmers train surrogates from measurements of the behavior of a program on a dataset of input examples. A key challenge of surrogate construction is determining what training data to use to train a surrogate of a given program. We present a methodology for sampling datasets to train neural-network-based surrogates of programs. We first characterize the proportion of data to sample from each region of a program's input space (corresponding to different execution paths of the program) based on the complexity of learning a surrogate of the corresponding execution path. We next provide a program analysis to determine the complexity of different paths in a program. We evaluate these results on a range of real-world programs, demonstrating that complexity-guided sampling results in empirical improvements in accuracy.

Accurate deformable object manipulation (DOM) is essential for achieving autonomy in robotic surgery, where soft tissues are being displaced, stretched, and dissected. Many DOM methods can be powered by simulation, which ensures realistic deformation by adhering to the governing physical constraints and allowing for model prediction and control. However, real soft objects in robotic surgery, such as membranes and soft tissues, have complex, anisotropic physical parameters that a simulation with simple initialization from cameras may not fully capture. To use the simulation techniques in real surgical tasks, the "real-to-sim" gap needs to be properly compensated. In this work, we propose an online, adaptive parameter tuning approach for simulation optimization that (1) bridges the real-to-sim gap between a physics simulation and observations obtained 3D perceptions through estimating a residual mapping and (2) optimizes its stiffness parameters online. Our method ensures a small residual gap between the simulation and observation and improves the simulation's predictive capabilities. The effectiveness of the proposed mechanism is evaluated in the manipulation of both a thin-shell and volumetric tissue, representative of most tissue scenarios. This work contributes to the advancement of simulation-based deformable tissue manipulation and holds potential for improving surgical autonomy.

Artificial intelligence (AI) has been advancing at a fast pace and it is now poised for deployment in a wide range of applications, such as autonomous systems, medical diagnosis and natural language processing. Early adoption of AI technology for real-world applications has not been without problems, particularly for neural networks, which may be unstable and susceptible to adversarial examples. In the longer term, appropriate safety assurance techniques need to be developed to reduce potential harm due to avoidable system failures and ensure trustworthiness. Focusing on certification and explainability, this paper provides an overview of techniques that have been developed to ensure safety of AI decisions and discusses future challenges.

When is heterogeneity in the composition of an autonomous robotic team beneficial and when is it detrimental? We investigate and answer this question in the context of a minimally viable model that examines the role of heterogeneous speeds in perimeter defense problems, where defenders share a total allocated speed budget. We consider two distinct problem settings and develop strategies based on dynamic programming and on local interaction rules. We present a theoretical analysis of both approaches and our results are extensively validated using simulations. Interestingly, our results demonstrate that the viability of heterogeneous teams depends on the amount of information available to the defenders. Moreover, our results suggest a universality property: across a wide range of problem parameters the optimal ratio of the speeds of the defenders remains nearly constant.

北京阿比特科技有限公司