Constraint-based causal discovery methods leverage conditional independence tests to infer causal relationships in a wide variety of applications. Just as the majority of machine learning methods, existing work focuses on studying $\textit{independent and identically distributed}$ data. However, it is known that even with infinite i.i.d.$\ $ data, constraint-based methods can only identify causal structures up to broad Markov equivalence classes, posing a fundamental limitation for causal discovery. In this work, we observe that exchangeable data contains richer conditional independence structure than i.i.d.$\ $ data, and show how the richer structure can be leveraged for causal discovery. We first present causal de Finetti theorems, which state that exchangeable distributions with certain non-trivial conditional independences can always be represented as $\textit{independent causal mechanism (ICM)}$ generative processes. We then present our main identifiability theorem, which shows that given data from an ICM generative process, its unique causal structure can be identified through performing conditional independence tests. We finally develop a causal discovery algorithm and demonstrate its applicability to inferring causal relationships from multi-environment data. Our code and models are publicly available at: //github.com/syguo96/Causal-de-Finetti
Despite decades of anti-caste efforts, sociocultural practices that marginalize lower-caste groups in India remain resilient and have even proliferated with the use of social media. This paper examines how groups engaged in caste-based discrimination leverage platform affordances of the social media site X (formerly Twitter) to circulate and reinforce caste ideologies. Our analysis builds upon previous HCI conceptualizations of online harms and safety to inform how to address caste-based othering. We offer theoretical and methodological suggestions for critical HCI research focused on studying the mechanisms of power along other social categories.
Deep neural networks have strong capabilities of memorizing the underlying training data, which can be a serious privacy concern. An effective solution to this problem is to train models with differential privacy, which provides rigorous privacy guarantees by injecting random noise to the gradients. This paper focuses on the scenario where sensitive data are distributed among multiple participants, who jointly train a model through federated learning (FL), using both secure multiparty computation (MPC) to ensure the confidentiality of each gradient update, and differential privacy to avoid data leakage in the resulting model. A major challenge in this setting is that common mechanisms for enforcing DP in deep learning, which inject real-valued noise, are fundamentally incompatible with MPC, which exchanges finite-field integers among the participants. Consequently, most existing DP mechanisms require rather high noise levels, leading to poor model utility. Motivated by this, we propose Skellam mixture mechanism (SMM), an approach to enforce DP on models built via FL. Compared to existing methods, SMM eliminates the assumption that the input gradients must be integer-valued, and, thus, reduces the amount of noise injected to preserve DP. Further, SMM allows tight privacy accounting due to the nice composition and sub-sampling properties of the Skellam distribution, which are key to accurate deep learning with DP. The theoretical analysis of SMM is highly non-trivial, especially considering (i) the complicated math of differentially private deep learning in general and (ii) the fact that the mixture of two Skellam distributions is rather complex, and to our knowledge, has not been studied in the DP literature. Extensive experiments on various practical settings demonstrate that SMM consistently and significantly outperforms existing solutions in terms of the utility of the resulting model.
Landmark universal function approximation results for neural networks with trained weights and biases provided impetus for the ubiquitous use of neural networks as learning models in Artificial Intelligence (AI) and neuroscience. Recent work has pushed the bounds of universal approximation by showing that arbitrary functions can similarly be learned by tuning smaller subsets of parameters, for example the output weights, within randomly initialized networks. Motivated by the fact that biases can be interpreted as biologically plausible mechanisms for adjusting unit outputs in neural networks, such as tonic inputs or activation thresholds, we investigate the expressivity of neural networks with random weights where only biases are optimized. We provide theoretical and numerical evidence demonstrating that feedforward neural networks with fixed random weights can be trained to perform multiple tasks by learning biases only. We further show that an equivalent result holds for recurrent neural networks predicting dynamical system trajectories. Our results are relevant to neuroscience, where they demonstrate the potential for behaviourally relevant changes in dynamics without modifying synaptic weights, as well as for AI, where they shed light on multi-task methods such as bias fine-tuning and unit masking.
Contribution evaluation in federated learning (FL) has become a pivotal research area due to its applicability across various domains, such as detecting low-quality datasets, enhancing model robustness, and designing incentive mechanisms. Existing contribution evaluation methods, which primarily rely on data volume, model similarity, and auxiliary test datasets, have shown success in diverse scenarios. However, their effectiveness often diminishes due to the heterogeneity of data distributions, presenting a significant challenge to their applicability. In response, this paper explores contribution evaluation in FL from an entirely new perspective of representation. In this work, we propose a new method for the contribution evaluation of heterogeneous participants in federated learning (FLCE), which introduces a novel indicator \emph{class contribution momentum} to conduct refined contribution evaluation. Our core idea is the construction and application of the class contribution momentum indicator from individual, relative, and holistic perspectives, thereby achieving an effective and efficient contribution evaluation of heterogeneous participants without relying on an auxiliary test dataset. Extensive experimental results demonstrate the superiority of our method in terms of fidelity, effectiveness, efficiency, and heterogeneity across various scenarios.
Advancing representation learning in specialized fields like medicine remains challenging due to the scarcity of expert annotations for text and images. To tackle this issue, we present a novel two-stage framework designed to extract high-quality factual statements from free-text radiology reports in order to improve the representations of text encoders and, consequently, their performance on various downstream tasks. In the first stage, we propose a \textit{Fact Extractor} that leverages large language models (LLMs) to identify factual statements from well-curated domain-specific datasets. In the second stage, we introduce a \textit{Fact Encoder} (CXRFE) based on a BERT model fine-tuned with objective functions designed to improve its representations using the extracted factual data. Our framework also includes a new embedding-based metric (CXRFEScore) for evaluating chest X-ray text generation systems, leveraging both stages of our approach. Extensive evaluations show that our fact extractor and encoder outperform current state-of-the-art methods in tasks such as sentence ranking, natural language inference, and label extraction from radiology reports. Additionally, our metric proves to be more robust and effective than existing metrics commonly used in the radiology report generation literature. The code of this project is available at \url{//github.com/PabloMessina/CXR-Fact-Encoder}.
The fusion of causal models with deep learning introducing increasingly intricate data sets, such as the causal associations within images or between textual components, has surfaced as a focal research area. Nonetheless, the broadening of original causal concepts and theories to such complex, non-statistical data has been met with serious challenges. In response, our study proposes redefinitions of causal data into three distinct categories from the standpoint of causal structure and representation: definite data, semi-definite data, and indefinite data. Definite data chiefly pertains to statistical data used in conventional causal scenarios, while semi-definite data refers to a spectrum of data formats germane to deep learning, including time-series, images, text, and others. Indefinite data is an emergent research sphere inferred from the progression of data forms by us. To comprehensively present these three data paradigms, we elaborate on their formal definitions, differences manifested in datasets, resolution pathways, and development of research. We summarize key tasks and achievements pertaining to definite and semi-definite data from myriad research undertakings, present a roadmap for indefinite data, beginning with its current research conundrums. Lastly, we classify and scrutinize the key datasets presently utilized within these three paradigms.
Believable proxies of human behavior can empower interactive applications ranging from immersive environments to rehearsal spaces for interpersonal communication to prototyping tools. In this paper, we introduce generative agents--computational software agents that simulate believable human behavior. Generative agents wake up, cook breakfast, and head to work; artists paint, while authors write; they form opinions, notice each other, and initiate conversations; they remember and reflect on days past as they plan the next day. To enable generative agents, we describe an architecture that extends a large language model to store a complete record of the agent's experiences using natural language, synthesize those memories over time into higher-level reflections, and retrieve them dynamically to plan behavior. We instantiate generative agents to populate an interactive sandbox environment inspired by The Sims, where end users can interact with a small town of twenty five agents using natural language. In an evaluation, these generative agents produce believable individual and emergent social behaviors: for example, starting with only a single user-specified notion that one agent wants to throw a Valentine's Day party, the agents autonomously spread invitations to the party over the next two days, make new acquaintances, ask each other out on dates to the party, and coordinate to show up for the party together at the right time. We demonstrate through ablation that the components of our agent architecture--observation, planning, and reflection--each contribute critically to the believability of agent behavior. By fusing large language models with computational, interactive agents, this work introduces architectural and interaction patterns for enabling believable simulations of human behavior.
Understanding causality helps to structure interventions to achieve specific goals and enables predictions under interventions. With the growing importance of learning causal relationships, causal discovery tasks have transitioned from using traditional methods to infer potential causal structures from observational data to the field of pattern recognition involved in deep learning. The rapid accumulation of massive data promotes the emergence of causal search methods with brilliant scalability. Existing summaries of causal discovery methods mainly focus on traditional methods based on constraints, scores and FCMs, there is a lack of perfect sorting and elaboration for deep learning-based methods, also lacking some considers and exploration of causal discovery methods from the perspective of variable paradigms. Therefore, we divide the possible causal discovery tasks into three types according to the variable paradigm and give the definitions of the three tasks respectively, define and instantiate the relevant datasets for each task and the final causal model constructed at the same time, then reviews the main existing causal discovery methods for different tasks. Finally, we propose some roadmaps from different perspectives for the current research gaps in the field of causal discovery and point out future research directions.
Graph neural networks generalize conventional neural networks to graph-structured data and have received widespread attention due to their impressive representation ability. In spite of the remarkable achievements, the performance of Euclidean models in graph-related learning is still bounded and limited by the representation ability of Euclidean geometry, especially for datasets with highly non-Euclidean latent anatomy. Recently, hyperbolic space has gained increasing popularity in processing graph data with tree-like structure and power-law distribution, owing to its exponential growth property. In this survey, we comprehensively revisit the technical details of the current hyperbolic graph neural networks, unifying them into a general framework and summarizing the variants of each component. More importantly, we present various HGNN-related applications. Last, we also identify several challenges, which potentially serve as guidelines for further flourishing the achievements of graph learning in hyperbolic spaces.
We propose a novel attention gate (AG) model for medical imaging that automatically learns to focus on target structures of varying shapes and sizes. Models trained with AGs implicitly learn to suppress irrelevant regions in an input image while highlighting salient features useful for a specific task. This enables us to eliminate the necessity of using explicit external tissue/organ localisation modules of cascaded convolutional neural networks (CNNs). AGs can be easily integrated into standard CNN architectures such as the U-Net model with minimal computational overhead while increasing the model sensitivity and prediction accuracy. The proposed Attention U-Net architecture is evaluated on two large CT abdominal datasets for multi-class image segmentation. Experimental results show that AGs consistently improve the prediction performance of U-Net across different datasets and training sizes while preserving computational efficiency. The code for the proposed architecture is publicly available.