亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present a novel learning-based trajectory generation algorithm for outdoor robot navigation. Our goal is to compute collision-free paths that also satisfy the environment-specific traversability constraints. Our approach is designed for global planning using limited onboard robot perception in mapless environments, while ensuring comprehensive coverage of all traversable directions. Our formulation uses a Conditional Variational Autoencoder (CVAE) generative model that is enhanced with traversability constraints and an optimization formulation used for the coverage. We highlight the benefits of our approach over state-of-the-art trajectory generation approaches and demonstrate its performance in challenging and large outdoor environments, including around buildings, across intersections, along trails, and off-road terrain, using a Clearpath Husky and a Boston Dynamics Spot robot. In practice, our approach results in a 6% improvement in coverage of traversable areas and an 89% reduction in trajectory portions residing in non-traversable regions. Our video is here: https: //youtu.be/OT0q4ccGHts

相關內容

As a privacy-preserving collaborative machine learning paradigm, federated learning (FL) has attracted significant interest from academia and the industry alike. To allow each data owner (a.k.a., FL clients) to train a heterogeneous and personalized local model based on its local data distribution, system resources and requirements on model structure, the field of model-heterogeneous personalized federated learning (MHPFL) has emerged. Existing MHPFL approaches either rely on the availability of a public dataset with special characteristics to facilitate knowledge transfer, incur high computation and communication costs, or face potential model leakage risks. To address these limitations, we propose a model-heterogeneous personalized Federated learning approach based on feature Extractor Sharing (pFedES). It incorporates a small homogeneous feature extractor into each client's heterogeneous local model. Clients train them via the proposed iterative learning method to enable the exchange of global generalized knowledge and local personalized knowledge. The small local homogeneous extractors produced after local training are uploaded to the FL server and for aggregation to facilitate easy knowledge sharing among clients. We theoretically prove that pFedES can converge over wall-to-wall time. Extensive experiments on two real-world datasets against six state-of-the-art methods demonstrate that pFedES builds the most accurate model, while incurring low communication and computation costs. Compared with the best-performing baseline, it achieves 1.61% higher test accuracy, while reducing communication and computation costs by 99.6% and 82.9%, respectively.

Federated learning (FL) is increasingly deployed among multiple clients to train a shared model over decentralized data. To address privacy concerns, FL systems need to safeguard the clients' data from disclosure during training and control data leakage through trained models when exposed to untrusted domains. Distributed differential privacy (DP) offers an appealing solution in this regard as it achieves a balanced tradeoff between privacy and utility without a trusted server. However, existing distributed DP mechanisms are impractical in the presence of client dropout, resulting in poor privacy guarantees or degraded training accuracy. In addition, these mechanisms suffer from severe efficiency issues. We present Dordis, a distributed differentially private FL framework that is highly efficient and resilient to client dropout. Specifically, we develop a novel `add-then-remove' scheme that enforces a required noise level precisely in each training round, even if some sampled clients drop out. This ensures that the privacy budget is utilized prudently, despite unpredictable client dynamics. To boost performance, Dordis operates as a distributed parallel architecture via encapsulating the communication and computation operations into stages. It automatically divides the global model aggregation into several chunk-aggregation tasks and pipelines them for optimal speedup. Large-scale deployment evaluations demonstrate that Dordis efficiently handles client dropout in various realistic FL scenarios, achieving the optimal privacy-utility tradeoff and accelerating training by up to 2.4$\times$ compared to existing solutions.

Learning feature interaction is the critical backbone to building recommender systems. In web-scale applications, learning feature interaction is extremely challenging due to the sparse and large input feature space; meanwhile, manually crafting effective feature interactions is infeasible because of the exponential solution space. We propose to leverage a Transformer-based architecture with attention layers to automatically capture feature interactions. Transformer architectures have witnessed great success in many domains, such as natural language processing and computer vision. However, there has not been much adoption of Transformer architecture for feature interaction modeling in industry. We aim at closing the gap. We identify two key challenges for applying the vanilla Transformer architecture to web-scale recommender systems: (1) Transformer architecture fails to capture the heterogeneous feature interactions in the self-attention layer; (2) The serving latency of Transformer architecture might be too high to be deployed in web-scale recommender systems. We first propose a heterogeneous self-attention layer, which is a simple yet effective modification to the self-attention layer in Transformer, to take into account the heterogeneity of feature interactions. We then introduce \textsc{Hiformer} (\textbf{H}eterogeneous \textbf{I}nteraction Trans\textbf{former}) to further improve the model expressiveness. With low-rank approximation and model pruning, \hiformer enjoys fast inference for online deployment. Extensive offline experiment results corroborates the effectiveness and efficiency of the \textsc{Hiformer} model. We have successfully deployed the \textsc{Hiformer} model to a real world large scale App ranking model at Google Play, with significant improvement in key engagement metrics (up to +2.66\%).

Generative Adversarial Networks (GANs) have risen to prominence in the field of deep learning, facilitating the generation of realistic data from random noise. The effectiveness of GANs often depends on the quality of feature extraction, a critical aspect of their architecture. This paper introduces L-WaveBlock, a novel and robust feature extractor that leverages the capabilities of the Discrete Wavelet Transform (DWT) with deep learning methodologies. L-WaveBlock is catered to quicken the convergence of GAN generators while simultaneously enhancing their performance. The paper demonstrates the remarkable utility of L-WaveBlock across three datasets, a road satellite imagery dataset, the CelebA dataset and the GoPro dataset, showcasing its ability to ease feature extraction and make it more efficient. By utilizing DWT, L-WaveBlock efficiently captures the intricate details of both structural and textural details, and further partitions feature maps into orthogonal subbands across multiple scales while preserving essential information at the same time. Not only does it lead to faster convergence, but also gives competent results on every dataset by employing the L-WaveBlock. The proposed method achieves an Inception Score of 3.6959 and a Structural Similarity Index of 0.4261 on the maps dataset, a Peak Signal-to-Noise Ratio of 29.05 and a Structural Similarity Index of 0.874 on the CelebA dataset. The proposed method performs competently to the state-of-the-art for the image denoising dataset, albeit not better, but still leads to faster convergence than conventional methods. With this, L-WaveBlock emerges as a robust and efficient tool for enhancing GAN-based image generation, demonstrating superior convergence speed and competitive performance across multiple datasets for image resolution, image generation and image denoising.

As an effective strategy, data augmentation (DA) alleviates data scarcity scenarios where deep learning techniques may fail. It is widely applied in computer vision then introduced to natural language processing and achieves improvements in many tasks. One of the main focuses of the DA methods is to improve the diversity of training data, thereby helping the model to better generalize to unseen testing data. In this survey, we frame DA methods into three categories based on the diversity of augmented data, including paraphrasing, noising, and sampling. Our paper sets out to analyze DA methods in detail according to the above categories. Further, we also introduce their applications in NLP tasks as well as the challenges.

Causality knowledge is vital to building robust AI systems. Deep learning models often perform poorly on tasks that require causal reasoning, which is often derived using some form of commonsense knowledge not immediately available in the input but implicitly inferred by humans. Prior work has unraveled spurious observational biases that models fall prey to in the absence of causality. While language representation models preserve contextual knowledge within learned embeddings, they do not factor in causal relationships during training. By blending causal relationships with the input features to an existing model that performs visual cognition tasks (such as scene understanding, video captioning, video question-answering, etc.), better performance can be achieved owing to the insight causal relationships bring about. Recently, several models have been proposed that have tackled the task of mining causal data from either the visual or textual modality. However, there does not exist widespread research that mines causal relationships by juxtaposing the visual and language modalities. While images offer a rich and easy-to-process resource for us to mine causality knowledge from, videos are denser and consist of naturally time-ordered events. Also, textual information offers details that could be implicit in videos. We propose iReason, a framework that infers visual-semantic commonsense knowledge using both videos and natural language captions. Furthermore, iReason's architecture integrates a causal rationalization module to aid the process of interpretability, error analysis and bias detection. We demonstrate the effectiveness of iReason using a two-pronged comparative analysis with language representation learning models (BERT, GPT-2) as well as current state-of-the-art multimodal causality models.

There recently has been a surge of interest in developing a new class of deep learning (DL) architectures that integrate an explicit time dimension as a fundamental building block of learning and representation mechanisms. In turn, many recent results show that topological descriptors of the observed data, encoding information on the shape of the dataset in a topological space at different scales, that is, persistent homology of the data, may contain important complementary information, improving both performance and robustness of DL. As convergence of these two emerging ideas, we propose to enhance DL architectures with the most salient time-conditioned topological information of the data and introduce the concept of zigzag persistence into time-aware graph convolutional networks (GCNs). Zigzag persistence provides a systematic and mathematically rigorous framework to track the most important topological features of the observed data that tend to manifest themselves over time. To integrate the extracted time-conditioned topological descriptors into DL, we develop a new topological summary, zigzag persistence image, and derive its theoretical stability guarantees. We validate the new GCNs with a time-aware zigzag topological layer (Z-GCNETs), in application to traffic forecasting and Ethereum blockchain price prediction. Our results indicate that Z-GCNET outperforms 13 state-of-the-art methods on 4 time series datasets.

Traffic forecasting is an important factor for the success of intelligent transportation systems. Deep learning models including convolution neural networks and recurrent neural networks have been applied in traffic forecasting problems to model the spatial and temporal dependencies. In recent years, to model the graph structures in the transportation systems as well as the contextual information, graph neural networks (GNNs) are introduced as new tools and have achieved the state-of-the-art performance in a series of traffic forecasting problems. In this survey, we review the rapidly growing body of recent research using different GNNs, e.g., graph convolutional and graph attention networks, in various traffic forecasting problems, e.g., road traffic flow and speed forecasting, passenger flow forecasting in urban rail transit systems, demand forecasting in ride-hailing platforms, etc. We also present a collection of open data and source resources for each problem, as well as future research directions. To the best of our knowledge, this paper is the first comprehensive survey that explores the application of graph neural networks for traffic forecasting problems. We have also created a public Github repository to update the latest papers, open data and source resources.

This paper surveys the machine learning literature and presents machine learning as optimization models. Such models can benefit from the advancement of numerical optimization techniques which have already played a distinctive role in several machine learning settings. Particularly, mathematical optimization models are presented for commonly used machine learning approaches for regression, classification, clustering, and deep neural networks as well new emerging applications in machine teaching and empirical model learning. The strengths and the shortcomings of these models are discussed and potential research directions are highlighted.

We study the problem of learning to reason in large scale knowledge graphs (KGs). More specifically, we describe a novel reinforcement learning framework for learning multi-hop relational paths: we use a policy-based agent with continuous states based on knowledge graph embeddings, which reasons in a KG vector space by sampling the most promising relation to extend its path. In contrast to prior work, our approach includes a reward function that takes the accuracy, diversity, and efficiency into consideration. Experimentally, we show that our proposed method outperforms a path-ranking based algorithm and knowledge graph embedding methods on Freebase and Never-Ending Language Learning datasets.

北京阿比特科技有限公司