亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In high-performance computing (HPC), the demand for efficient parallel programming models has grown dramatically since the end of Dennard Scaling and the subsequent move to multi-core CPUs. OpenMP stands out as a popular choice due to its simplicity and portability, offering a directive-driven approach for shared-memory parallel programming. Despite its wide adoption, however, there is a lack of comprehensive data on the actual usage of OpenMP constructs, hindering unbiased insights into its popularity and evolution. This paper presents a statistical analysis of OpenMP usage and adoption trends based on a novel and extensive database, HPCORPUS, compiled from GitHub repositories containing C, C++, and Fortran code. The results reveal that OpenMP is the dominant parallel programming model, accounting for 45% of all analyzed parallel APIs. Furthermore, it has demonstrated steady and continuous growth in popularity over the past decade. Analyzing specific OpenMP constructs, the study provides in-depth insights into their usage patterns and preferences across the three languages. Notably, we found that while OpenMP has a strong "common core" of constructs in common usage (while the rest of the API is less used), there are new adoption trends as well, such as simd and target directives for accelerated computing and task for irregular parallelism. Overall, this study sheds light on OpenMP's significance in HPC applications and provides valuable data for researchers and practitioners. It showcases OpenMP's versatility, evolving adoption, and relevance in contemporary parallel programming, underlining its continued role in HPC applications and beyond. These statistical insights are essential for making informed decisions about parallelization strategies and provide a foundation for further advancements in parallel programming models and techniques.

相關內容

We present a deformable generator model to disentangle the appearance and geometric information for both image and video data in a purely unsupervised manner. The appearance generator network models the information related to appearance, including color, illumination, identity or category, while the geometric generator performs geometric warping, such as rotation and stretching, through generating deformation field which is used to warp the generated appearance to obtain the final image or video sequences. Two generators take independent latent vectors as input to disentangle the appearance and geometric information from image or video sequences. For video data, a nonlinear transition model is introduced to both the appearance and geometric generators to capture the dynamics over time. The proposed scheme is general and can be easily integrated into different generative models. An extensive set of qualitative and quantitative experiments shows that the appearance and geometric information can be well disentangled, and the learned geometric generator can be conveniently transferred to other image datasets to facilitate knowledge transfer tasks.

In all state-of-the-art sketching and coreset techniques for clustering, as well as in the best known fixed-parameter tractable approximation algorithms, randomness plays a key role. For the classic $k$-median and $k$-means problems, there are no known deterministic dimensionality reduction procedure or coreset construction that avoid an exponential dependency on the input dimension $d$, the precision parameter $\varepsilon^{-1}$ or $k$. Furthermore, there is no coreset construction that succeeds with probability $1-1/n$ and whose size does not depend on the number of input points, $n$. This has led researchers in the area to ask what is the power of randomness for clustering sketches [Feldman, WIREs Data Mining Knowl. Discov'20]. Similarly, the best approximation ratio achievable deterministically without a complexity exponential in the dimension are $\Omega(1)$ for both $k$-median and $k$-means, even when allowing a complexity FPT in the number of clusters $k$. This stands in sharp contrast with the $(1+\varepsilon)$-approximation achievable in that case, when allowing randomization. In this paper, we provide deterministic sketches constructions for clustering, whose size bounds are close to the best-known randomized ones. We also construct a deterministic algorithm for computing $(1+\varepsilon)$-approximation to $k$-median and $k$-means in high dimensional Euclidean spaces in time $2^{k^2/\varepsilon^{O(1)}} poly(nd)$, close to the best randomized complexity. Furthermore, our new insights on sketches also yield a randomized coreset construction that uses uniform sampling, that immediately improves over the recent results of [Braverman et al. FOCS '22] by a factor $k$.

Neural radiance fields (NeRFs) enable high-quality novel view synthesis, but their high computational complexity limits deployability. While existing neural-based solutions strive for efficiency, they use one-size-fits-all architectures regardless of scene complexity. The same architecture may be unnecessarily large for simple scenes but insufficient for complex ones. Thus, there is a need to dynamically optimize the neural network component of NeRFs to achieve a balance between computational complexity and specific targets for synthesis quality. We introduce NAS-NeRF, a generative neural architecture search strategy that generates compact, scene-specialized NeRF architectures by balancing architecture complexity and target synthesis quality metrics. Our method incorporates constraints on target metrics and budgets to guide the search towards architectures tailored for each scene. Experiments on the Blender synthetic dataset show the proposed NAS-NeRF can generate architectures up to 5.74$\times$ smaller, with 4.19$\times$ fewer FLOPs, and 1.93$\times$ faster on a GPU than baseline NeRFs, without suffering a drop in SSIM. Furthermore, we illustrate that NAS-NeRF can also achieve architectures up to 23$\times$ smaller, with 22$\times$ fewer FLOPs, and 4.7$\times$ faster than baseline NeRFs with only a 5.3% average SSIM drop. Our source code is also made publicly available at //saeejithnair.github.io/NAS-NeRF.

Self-supervised learning (SSL) models have recently demonstrated remarkable performance across various tasks, including image segmentation. This study delves into the emergent characteristics of the Self-Distillation with No Labels (DINO) algorithm and its application to Synthetic Aperture Radar (SAR) imagery. We pre-train a vision transformer (ViT)-based DINO model using unlabeled SAR data, and later fine-tune the model to predict high-resolution land cover maps. We rigorously evaluate the utility of attention maps generated by the ViT backbone, and compare them with the model's token embedding space. We observe a small improvement in model performance with pre-training compared to training from scratch, and discuss the limitations and opportunities of SSL for remote sensing and land cover segmentation. Beyond small performance increases, we show that ViT attention maps hold great intrinsic value for remote sensing, and could provide useful inputs to other algorithms. With this, our work lays the ground-work for bigger and better SSL models for Earth Observation.

Deep implicit functions (DIFs) have emerged as a powerful paradigm for many computer vision tasks such as 3D shape reconstruction, generation, registration, completion, editing, and understanding. However, given a set of 3D shapes with associated covariates there is at present no shape representation method which allows to precisely represent the shapes while capturing the individual dependencies on each covariate. Such a method would be of high utility to researchers to discover knowledge hidden in a population of shapes. For scientific shape discovery, we propose a 3D Neural Additive Model for Interpretable Shape Representation ($\texttt{NAISR}$) which describes individual shapes by deforming a shape atlas in accordance to the effect of disentangled covariates. Our approach captures shape population trends and allows for patient-specific predictions through shape transfer. $\texttt{NAISR}$ is the first approach to combine the benefits of deep implicit shape representations with an atlas deforming according to specified covariates. We evaluate $\texttt{NAISR}$ with respect to shape reconstruction, shape disentanglement, shape evolution, and shape transfer on three datasets: 1) $\textit{Starman}$, a simulated 2D shape dataset; 2) the ADNI hippocampus 3D shape dataset; and 3) a pediatric airway 3D shape dataset. Our experiments demonstrate that $\textit{Starman}$ achieves excellent shape reconstruction performance while retaining interpretability. Our code is available at $\href{//github.com/uncbiag/NAISR}{//github.com/uncbiag/NAISR}$.

For decades, much software engineering research has been dedicated to devising automated solutions aimed at enhancing developer productivity and elevating software quality. The past two decades have witnessed an unparalleled surge in the development of intelligent solutions tailored for software engineering tasks. This momentum established the Artificial Intelligence for Software Engineering (AI4SE) area, which has swiftly become one of the most active and popular areas within the software engineering field. This Future of Software Engineering (FoSE) paper navigates through several focal points. It commences with a succinct introduction and history of AI4SE. Thereafter, it underscores the core challenges inherent to AI4SE, particularly highlighting the need to realize trustworthy and synergistic AI4SE. Progressing, the paper paints a vision for the potential leaps achievable if AI4SE's key challenges are surmounted, suggesting a transition towards Software Engineering 2.0. Two strategic roadmaps are then laid out: one centered on realizing trustworthy AI4SE, and the other on fostering synergistic AI4SE. While this paper may not serve as a conclusive guide, its intent is to catalyze further progress. The ultimate aspiration is to position AI4SE as a linchpin in redefining the horizons of software engineering, propelling us toward Software Engineering 2.0.

Robots are integrating more huge-size models to enrich functions and improve accuracy, which leads to out-of-control computing pressure. And thus robots are encountering bottlenecks in computing power and battery capacity. Fog or cloud robotics is one of the most anticipated theories to address these issues. Approaches of cloud robotics have developed from system-level to node-level. However, the present node-level systems are not flexible enough to dynamically adapt to changing conditions. To address this, we present ElasticROS, which evolves the present node-level systems into an algorithm-level one. ElasticROS is based on ROS and ROS2. For fog and cloud robotics, it is the first robot operating system with algorithm-level collaborative computing. ElasticROS develops elastic collaborative computing to achieve adaptability to dynamic conditions. The collaborative computing algorithm is the core and challenge of ElasticROS. We abstract the problem and then propose an algorithm named ElasAction to address. It is a dynamic action decision algorithm based on online learning, which determines how robots and servers cooperate. The algorithm dynamically updates parameters to adapt to changes of conditions where the robot is currently in. It achieves elastically distributing of computing tasks to robots and servers according to configurations. In addition, we prove that the regret upper bound of the ElasAction is sublinear, which guarantees its convergence and thus enables ElasticROS to be stable in its elasticity. Finally, we conducted experiments with ElasticROS on common tasks of robotics, including SLAM, grasping and human-robot dialogue, and then measured its performances in latency, CPU usage and power consumption. The algorithm-level ElasticROS performs significantly better than the present node-level system.

Following unprecedented success on the natural language tasks, Transformers have been successfully applied to several computer vision problems, achieving state-of-the-art results and prompting researchers to reconsider the supremacy of convolutional neural networks (CNNs) as {de facto} operators. Capitalizing on these advances in computer vision, the medical imaging field has also witnessed growing interest for Transformers that can capture global context compared to CNNs with local receptive fields. Inspired from this transition, in this survey, we attempt to provide a comprehensive review of the applications of Transformers in medical imaging covering various aspects, ranging from recently proposed architectural designs to unsolved issues. Specifically, we survey the use of Transformers in medical image segmentation, detection, classification, reconstruction, synthesis, registration, clinical report generation, and other tasks. In particular, for each of these applications, we develop taxonomy, identify application-specific challenges as well as provide insights to solve them, and highlight recent trends. Further, we provide a critical discussion of the field's current state as a whole, including the identification of key challenges, open problems, and outlining promising future directions. We hope this survey will ignite further interest in the community and provide researchers with an up-to-date reference regarding applications of Transformer models in medical imaging. Finally, to cope with the rapid development in this field, we intend to regularly update the relevant latest papers and their open-source implementations at \url{//github.com/fahadshamshad/awesome-transformers-in-medical-imaging}.

Multi-agent influence diagrams (MAIDs) are a popular form of graphical model that, for certain classes of games, have been shown to offer key complexity and explainability advantages over traditional extensive form game (EFG) representations. In this paper, we extend previous work on MAIDs by introducing the concept of a MAID subgame, as well as subgame perfect and trembling hand perfect equilibrium refinements. We then prove several equivalence results between MAIDs and EFGs. Finally, we describe an open source implementation for reasoning about MAIDs and computing their equilibria.

With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves better performance than pretraining approaches based on autoregressive language modeling. However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into pretraining. Empirically, XLNet outperforms BERT on 20 tasks, often by a large margin, and achieves state-of-the-art results on 18 tasks including question answering, natural language inference, sentiment analysis, and document ranking.

北京阿比特科技有限公司