In this paper we present a proof system that operates on graphs instead of formulas. Starting from the well-known relationship between formulas and cographs, we drop the cograph-conditions and look at arbitrary undirected) graphs. This means that we lose the tree structure of the formulas corresponding to the cographs, and we can no longer use standard proof theoretical methods that depend on that tree structure. In order to overcome this difficulty, we use a modular decomposition of graphs and some techniques from deep inference where inference rules do not rely on the main connective of a formula. For our proof system we show the admissibility of cut and a generalisation of the splitting property. Finally, we show that our system is a conservative extension of multiplicative linear logic with mix, and we argue that our graphs form a notion of generalised connective.
Credit assignment problem of neural networks refers to evaluating the credit of each network component to the final outputs. For an untrained neural network, approaches to tackling it have made great contributions to parameter update and model revolution during the training phase. This problem on trained neural networks receives rare attention, nevertheless, it plays an increasingly important role in neural network patch, specification and verification. Based on Koopman operator theory, this paper presents an alternative perspective of linear dynamics on dealing with the credit assignment problem for trained neural networks. Regarding a neural network as the composition of sub-dynamics series, we utilize step-delay embedding to capture snapshots of each component, characterizing the established mapping as exactly as possible. To circumvent the dimension-difference problem encountered during the embedding, a composition and decomposition of an auxiliary linear layer, termed minimal linear dimension alignment, is carefully designed with rigorous formal guarantee. Afterwards, each component is approximated by a Koopman operator and we derive the Jacobian matrix and its corresponding determinant, similar to backward propagation. Then, we can define a metric with algebraic interpretability for the credit assignment of each network component. Moreover, experiments conducted on typical neural networks demonstrate the effectiveness of the proposed method.
Intensive Care Units usually carry patients with a serious risk of mortality. Recent research has shown the ability of Machine Learning to indicate the patients' mortality risk and point physicians toward individuals with a heightened need for care. Nevertheless, healthcare data is often subject to privacy regulations and can therefore not be easily shared in order to build Centralized Machine Learning models that use the combined data of multiple hospitals. Federated Learning is a Machine Learning framework designed for data privacy that can be used to circumvent this problem. In this study, we evaluate the ability of deep Federated Learning to predict the risk of Intensive Care Unit mortality at an early stage. We compare the predictive performance of Federated, Centralized, and Local Machine Learning in terms of AUPRC, F1-score, and AUROC. Our results show that Federated Learning performs equally well as the centralized approach and is substantially better than the local approach, thus providing a viable solution for early Intensive Care Unit mortality prediction. In addition, we show that the prediction performance is higher when the patient history window is closer to discharge or death. Finally, we show that using the F1-score as an early stopping metric can stabilize and increase the performance of our approach for the task at hand.
Motivated by questions from program transformations, eight notions of isomorphisms between term rewriting systems are defined, analysed, and classified. The notions include global isomorphisms, where the renaming of variables and function symbols is the same for all term rewriting rules of the system, local ones, where a single renaming for every rule is used, and a combination, where one symbol set is renamed globally while the other set is renamed locally. Preservation of semantic properties like convertibility and termination is analysed for the different isomorphism notions. The notions of templates and maximal normal forms of term rewriting systems are introduced and algorithms to efficiently compute them are presented. Equipped with these techniques, the complexity of the underlying decision problems of the isomorphisms are analysed and either shown to be efficiently solvable or proved to be complete for the graph isomorphism complexity class.
Traditionally, robots are regarded as universal motion generation machines. They are designed mainly by kinematics considerations while the desired dynamics is imposed by strong actuators and high-rate control loops. As an alternative, one can first consider the robot's intrinsic dynamics and optimize it in accordance with the desired tasks. Therefore, one needs to better understand intrinsic, uncontrolled dynamics of robotic systems. In this paper we focus on periodic orbits, as fundamental dynamic properties with many practical applications. Algebraic topology and differential geometry provide some fundamental statements about existence of periodic orbits. As an example, we present periodic orbits of the simplest multi-body system: the double-pendulum in gravity. This simple system already displays a rich variety of periodic orbits. We classify these into three classes: toroidal orbits, disk orbits and nonlinear normal modes. Some of these we found by geometrical insights and some by numerical simulation and sampling.
Concept relatedness estimation (CRE) aims to determine whether two given concepts are related. Existing methods only consider the pairwise relationship between concepts, while overlooking the higher-order relationship that could be encoded in a concept-level graph structure. We discover that this underlying graph satisfies a set of intrinsic properties of CRE, including reflexivity, commutativity, and transitivity. In this paper, we formalize the CRE properties and introduce a graph structure named ConcreteGraph. To address the data scarcity issue in CRE, we introduce a novel data augmentation approach to sample new concept pairs from the graph. As it is intractable for data augmentation to fully capture the structural information of the ConcreteGraph due to a large amount of potential concept pairs, we further introduce a novel Graph Component Contrastive Learning framework to implicitly learn the complete structure of the ConcreteGraph. Empirical results on three datasets show significant improvement over the state-of-the-art model. Detailed ablation studies demonstrate that our proposed approach can effectively capture the high-order relationship among concepts.
Reinforcement learning (RL) problems over general state and action spaces are notoriously challenging. In contrast to the tableau setting, one can not enumerate all the states and then iteratively update the policies for each state. This prevents the application of many well-studied RL methods especially those with provable convergence guarantees. In this paper, we first present a substantial generalization of the recently developed policy mirror descent method to deal with general state and action spaces. We introduce new approaches to incorporate function approximation into this method, so that we do not need to use explicit policy parameterization at all. Moreover, we present a novel policy dual averaging method for which possibly simpler function approximation techniques can be applied. We establish linear convergence rate to global optimality or sublinear convergence to stationarity for these methods applied to solve different classes of RL problems under exact policy evaluation. We then define proper notions of the approximation errors for policy evaluation and investigate their impact on the convergence of these methods applied to general-state RL problems with either finite-action or continuous-action spaces. To the best of our knowledge, the development of these algorithmic frameworks as well as their convergence analysis appear to be new in the literature.
Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.
In many real-world network datasets such as co-authorship, co-citation, email communication, etc., relationships are complex and go beyond pairwise. Hypergraphs provide a flexible and natural modeling tool to model such complex relationships. The obvious existence of such complex relationships in many real-world networks naturaly motivates the problem of learning with hypergraphs. A popular learning paradigm is hypergraph-based semi-supervised learning (SSL) where the goal is to assign labels to initially unlabeled vertices in a hypergraph. Motivated by the fact that a graph convolutional network (GCN) has been effective for graph-based SSL, we propose HyperGCN, a novel GCN for SSL on attributed hypergraphs. Additionally, we show how HyperGCN can be used as a learning-based approach for combinatorial optimisation on NP-hard hypergraph problems. We demonstrate HyperGCN's effectiveness through detailed experimentation on real-world hypergraphs.
Lots of learning tasks require dealing with graph data which contains rich relation information among elements. Modeling physics system, learning molecular fingerprints, predicting protein interface, and classifying diseases require that a model to learn from graph inputs. In other domains such as learning from non-structural data like texts and images, reasoning on extracted structures, like the dependency tree of sentences and the scene graph of images, is an important research topic which also needs graph reasoning models. Graph neural networks (GNNs) are connectionist models that capture the dependence of graphs via message passing between the nodes of graphs. Unlike standard neural networks, graph neural networks retain a state that can represent information from its neighborhood with an arbitrary depth. Although the primitive graph neural networks have been found difficult to train for a fixed point, recent advances in network architectures, optimization techniques, and parallel computation have enabled successful learning with them. In recent years, systems based on graph convolutional network (GCN) and gated graph neural network (GGNN) have demonstrated ground-breaking performance on many tasks mentioned above. In this survey, we provide a detailed review over existing graph neural network models, systematically categorize the applications, and propose four open problems for future research.
Graph Neural Networks (GNNs) for representation learning of graphs broadly follow a neighborhood aggregation framework, where the representation vector of a node is computed by recursively aggregating and transforming feature vectors of its neighboring nodes. Many GNN variants have been proposed and have achieved state-of-the-art results on both node and graph classification tasks. However, despite GNNs revolutionizing graph representation learning, there is limited understanding of their representational properties and limitations. Here, we present a theoretical framework for analyzing the expressive power of GNNs in capturing different graph structures. Our results characterize the discriminative power of popular GNN variants, such as Graph Convolutional Networks and GraphSAGE, and show that they cannot learn to distinguish certain simple graph structures. We then develop a simple architecture that is provably the most expressive among the class of GNNs and is as powerful as the Weisfeiler-Lehman graph isomorphism test. We empirically validate our theoretical findings on a number of graph classification benchmarks, and demonstrate that our model achieves state-of-the-art performance.