Multivariate probabilistic verification is concerned with the evaluation of joint probability distributions of vector quantities such as a weather variable at multiple locations or a wind vector for instance. The logarithmic score is a proper score that is useful in this context. In order to apply this score to ensemble forecasts, a choice for the density is required. Here, we are interested in the specific case when the density is multivariate normal with mean and covariance given by the ensemble mean and ensemble covariance, respectively. Under the assumptions of multivariate normality and exchangeability of the ensemble members, a relationship is derived which describes how the logarithmic score depends on ensemble size. It permits to estimate the score in the limit of infinite ensemble size from a small ensemble and thus produces a fair logarithmic score for multivariate ensemble forecasts under the assumption of normality. This generalises a study from 2018 which derived the ensemble size adjustment of the logarithmic score in the univariate case. An application to medium-range forecasts examines the usefulness of the ensemble size adjustments when multivariate normality is only an approximation. Predictions of vectors consisting of several different combinations of upper air variables are considered. Logarithmic scores are calculated for these vectors using ECMWF's daily extended-range forecasts which consist of a 100-member ensemble. The probabilistic forecasts of these vectors are verified against operational ECMWF analyses in the Northern mid-latitudes in autumn 2023. Scores are computed for ensemble sizes from 8 to 100. The fair logarithmic scores of ensembles with different cardinalities are very close, in contrast to the unadjusted scores which decrease considerably with ensemble size. This provides evidence for the practical usefulness of the derived relationships.
Highly resolved finite element simulations of a laser beam welding process are considered. The thermomechanical behavior of this process is modeled with a set of thermoelasticity equations resulting in a nonlinear, nonsymmetric saddle point system. Newton's method is used to solve the nonlinearity and suitable domain decomposition preconditioners are applied to accelerate the convergence of the iterative method used to solve all linearized systems. Since a onelevel Schwarz preconditioner is in general not scalable, a second level has to be added. Therefore, the construction and numerical analysis of a monolithic, twolevel overlapping Schwarz approach with the GDSW (Generalized Dryja-Smith-Widlund) coarse space and an economic variant thereof are presented here.
We propose a new full discretization of the Biot's equations in poroelasticity. The construction is driven by the inf-sup theory, which we recently developed. It builds upon the four-field formulation of the equations obtained by introducing the total pressure and the total fluid content. We discretize in space with Lagrange finite elements and in time with backward Euler. We establish inf-sup stability and quasi-optimality of the proposed discretization, with robust constants with respect to all material parameters. We further construct an interpolant showing how the error decays for smooth solutions.
Threshold selection is a fundamental problem in any threshold-based extreme value analysis. While models are asymptotically motivated, selecting an appropriate threshold for finite samples is difficult and highly subjective through standard methods. Inference for high quantiles can also be highly sensitive to the choice of threshold. Too low a threshold choice leads to bias in the fit of the extreme value model, while too high a choice leads to unnecessary additional uncertainty in the estimation of model parameters. We develop a novel methodology for automated threshold selection that directly tackles this bias-variance trade-off. We also develop a method to account for the uncertainty in the threshold estimation and propagate this uncertainty through to high quantile inference. Through a simulation study, we demonstrate the effectiveness of our method for threshold selection and subsequent extreme quantile estimation, relative to the leading existing methods, and show how the method's effectiveness is not sensitive to the tuning parameters. We apply our method to the well-known, troublesome example of the River Nidd dataset.
We show that the limiting variance of a sequence of estimators for a structured covariance matrix has a general form that appears as the variance of a scaled projection of a random matrix that is of radial type and a similar result is obtained for the corresponding sequence of estimators for the vector of variance components. These results are illustrated by the limiting behavior of estimators for a linear covariance structure in a variety of multivariate statistical models. We also derive a characterization for the influence function of corresponding functionals. Furthermore, we derive the limiting distribution and influence function of scale invariant mappings of such estimators and their corresponding functionals. As a consequence, the asymptotic relative efficiency of different estimators for the shape component of a structured covariance matrix can be compared by means of a single scalar and the gross error sensitivity of the corresponding influence functions can be compared by means of a single index. Similar results are obtained for estimators of the normalized vector of variance components. We apply our results to investigate how the efficiency, gross error sensitivity, and breakdown point of S-estimators for the normalized variance components are affected simultaneously by varying their cutoff value.
This paper introduces a new numerical scheme for a system that includes evolution equations describing a perfect plasticity model with a time-dependent yield surface. We demonstrate that the solution to the proposed scheme is stable under suitable norms. Moreover, the stability leads to the existence of an exact solution, and we also prove that the solution to the proposed scheme converges strongly to the exact solution under suitable norms.
We deal with a model selection problem for structural equation modeling (SEM) with latent variables for diffusion processes. Based on the asymptotic expansion of the marginal quasi-log likelihood, we propose two types of quasi-Bayesian information criteria of the SEM. It is shown that the information criteria have model selection consistency. Furthermore, we examine the finite-sample performance of the proposed information criteria by numerical experiments.
We study parametric estimation for a second order linear parabolic stochastic partial differential equation (SPDE) in two space dimensions driven by a $Q$-Wiener process based on high frequency spatio-temporal data. We give an estimator of the damping parameter of the $Q$-Wiener process of the SPDE based on quadratic variations with temporal and spatial increments. We also provide simulation results of the proposed estimator.
The use of variable grid BDF methods for parabolic equations leads to structures that are called variable (coefficient) Toeplitz. Here, we consider a more general class of matrix-sequences and we prove that they belong to the maximal $*$-algebra of generalized locally Toeplitz (GLT) matrix-sequences. Then, we identify the associated GLT symbols in the general setting and in the specific case, by providing in both cases a spectral and singular value analysis. More specifically, we use the GLT tools in order to study the asymptotic behaviour of the eigenvalues and singular values of the considered BDF matrix-sequences, in connection with the given non-uniform grids. Numerical examples, visualizations, and open problems end the present work.
Structure-preserving particle methods have recently been proposed for a class of nonlinear continuity equations, including aggregation-diffusion equation in [J. Carrillo, K. Craig, F. Patacchini, Calc. Var., 58 (2019), pp. 53] and the Landau equation in [J. Carrillo, J. Hu., L. Wang, J. Wu, J. Comput. Phys. X, 7 (2020), pp. 100066]. One common feature to these equations is that they both admit some variational formulation, which upon proper regularization, leads to particle approximations dissipating the energy and conserving some quantities simultaneously at the semi-discrete level. In this paper, we formulate continuity equations with a density dependent bilinear form associated with the variational derivative of the energy functional and prove that appropriate particle methods satisfy a compatibility condition with its regularized energy. This enables us to utilize discrete gradient time integrators and show that the energy can be dissipated and the mass conserved simultaneously at the fully discrete level. In the case of the Landau equation, we prove that our approach also conserves the momentum and kinetic energy at the fully discrete level. Several numerical examples are presented to demonstrate the dissipative and conservative properties of our proposed method.
Mean value coordinates can be used to map one polygon into another, with application to computer graphics and curve and surface modelling. In this paper we show that if the polygons are quadrilaterals, and if the target quadrilateral is convex, then the mapping is injective.