Teams of flying robots can be used for inspection, delivery, and construction tasks, in which they might be required to fly very close to each other. In such close-proximity cases, nonlinear aerodynamic effects can cause catastrophic crashes, necessitating each robots' awareness of the surrounding. Existing approaches rely on multiple, expensive or heavy perception sensors. Such perception methods are impractical to use on nano multirotors that are constrained with respect to weight, computation, and price. Instead, we propose to use the often ignored yaw degree-of-freedom of multirotors to spin a single, cheap and lightweight monocular camera at a high angular rate for omnidirectional awareness of the neighboring robots. We provide a dataset collected with real-world physical flights as well as with 3D-rendered scenes and compare two existing learning-based methods in different settings with respect to success rate, relative position estimation, and downwash prediction accuracy. We demonstrate that our proposed spinning camera is capable of predicting the presence of aerodynamic downwash with an $F_1$ score of over 80% in a challenging swapping task.
Molecular docking is critical to structure-based virtual screening, yet the throughput of such workflows is limited by the expensive optimization of scoring functions involved in most docking algorithms. We explore how machine learning can accelerate this process by learning a scoring function with a functional form that allows for more rapid optimization. Specifically, we define the scoring function to be the cross-correlation of multi-channel ligand and protein scalar fields parameterized by equivariant graph neural networks, enabling rapid optimization over rigid-body degrees of freedom with fast Fourier transforms. The runtime of our approach can be amortized at several levels of abstraction, and is particularly favorable for virtual screening settings with a common binding pocket. We benchmark our scoring functions on two simplified docking-related tasks: decoy pose scoring and rigid conformer docking. Our method attains similar but faster performance on crystal structures compared to the widely-used Vina and Gnina scoring functions, and is more robust on computationally predicted structures. Code is available at //github.com/bjing2016/scalar-fields.
A self-contained calibration procedure that can be performed automatically without additional external sensors or tools is a significant advantage, especially for complex robotic systems. Here, we show that the kinematics of a multi-fingered robotic hand can be precisely calibrated only by moving the tips of the fingers pairwise into contact. The only prerequisite for this is sensitive contact detection, e.g., by torque-sensing in the joints (as in our DLR-Hand II) or tactile skin. The measurement function for a given joint configuration is the distance between the modeled fingertip geometries, but the actual measurement is always zero. In an in-depth analysis, we prove that this contact-based calibration determines all quantities needed for manipulating objects with the hand, i.e., the difference vectors of the fingertips, and that it is as sensitive as a calibration using an external visual tracking system and markers. We describe the complete calibration scheme, including the selection of optimal sample joint configurations and search motions for the contacts despite the initial kinematic uncertainties. In a real-world calibration experiment for the torque-controlled four-fingered DLR-Hand II, the maximal error of 17.7mm can be reduced to only 3.7mm.
The following is a technical report to test the validity of the proposed Subspace Pyramid Fusion Module (SPFM) to capture multi-scale feature representations, which is more useful for semantic segmentation. In this investigation, we have proposed the Efficient Shuffle Attention Module(ESAM) to reconstruct the skip-connections paths by fusing multi-level global context features. Experimental results on two well-known semantic segmentation datasets, including Camvid and Cityscapes, show the effectiveness of our proposed method.
Robotic interaction in fast-paced environments presents a substantial challenge, particularly in tasks requiring the prediction of dynamic, non-stationary objects for timely and accurate responses. An example of such a task is ping-pong, where the physical limitations of a robot may prevent it from reaching its goal in the time it takes the ball to cross the table. The scene of a ping-pong match contains rich visual information of a player's movement that can allow future game state prediction, with varying degrees of uncertainty. To this aim, we present a visual modeling, prediction, and control system to inform a ping-pong playing robot utilizing visual model uncertainty to allow earlier motion of the robot throughout the game. We present demonstrations and metrics in simulation to show the benefit of incorporating model uncertainty, the limitations of current standard model uncertainty estimators, and the need for more verifiable model uncertainty estimation. Our code is publicly available.
The ability of image and video generation models to create photorealistic images has reached unprecedented heights, making it difficult to distinguish between real and fake images in many cases. However, despite this progress, a gap remains between the quality of generated images and those found in the real world. To address this, we have reviewed a vast body of literature from both academic publications and social media to identify qualitative shortcomings in image generation models, which we have classified into five categories. By understanding these failures, we can identify areas where these models need improvement, as well as develop strategies for detecting deep fakes. The prevalence of deep fakes in today's society is a serious concern, and our findings can help mitigate their negative impact.
Image Classification is a fundamental task in the field of computer vision that frequently serves as a benchmark for gauging advancements in Computer Vision. Over the past few years, significant progress has been made in image classification due to the emergence of deep learning. However, challenges still exist, such as modeling fine-grained visual information, high computation costs, the parallelism of the model, and inconsistent evaluation protocols across datasets. In this paper, we conduct a comprehensive survey of existing papers on Vision Transformers for image classification. We first introduce the popular image classification datasets that influenced the design of models. Then, we present Vision Transformers models in chronological order, starting with early attempts at adapting attention mechanism to vision tasks followed by the adoption of vision transformers, as they have demonstrated success in capturing intricate patterns and long-range dependencies within images. Finally, we discuss open problems and shed light on opportunities for image classification to facilitate new research ideas.
Understanding causality helps to structure interventions to achieve specific goals and enables predictions under interventions. With the growing importance of learning causal relationships, causal discovery tasks have transitioned from using traditional methods to infer potential causal structures from observational data to the field of pattern recognition involved in deep learning. The rapid accumulation of massive data promotes the emergence of causal search methods with brilliant scalability. Existing summaries of causal discovery methods mainly focus on traditional methods based on constraints, scores and FCMs, there is a lack of perfect sorting and elaboration for deep learning-based methods, also lacking some considers and exploration of causal discovery methods from the perspective of variable paradigms. Therefore, we divide the possible causal discovery tasks into three types according to the variable paradigm and give the definitions of the three tasks respectively, define and instantiate the relevant datasets for each task and the final causal model constructed at the same time, then reviews the main existing causal discovery methods for different tasks. Finally, we propose some roadmaps from different perspectives for the current research gaps in the field of causal discovery and point out future research directions.
The dominating NLP paradigm of training a strong neural predictor to perform one task on a specific dataset has led to state-of-the-art performance in a variety of applications (eg. sentiment classification, span-prediction based question answering or machine translation). However, it builds upon the assumption that the data distribution is stationary, ie. that the data is sampled from a fixed distribution both at training and test time. This way of training is inconsistent with how we as humans are able to learn from and operate within a constantly changing stream of information. Moreover, it is ill-adapted to real-world use cases where the data distribution is expected to shift over the course of a model's lifetime. The first goal of this thesis is to characterize the different forms this shift can take in the context of natural language processing, and propose benchmarks and evaluation metrics to measure its effect on current deep learning architectures. We then proceed to take steps to mitigate the effect of distributional shift on NLP models. To this end, we develop methods based on parametric reformulations of the distributionally robust optimization framework. Empirically, we demonstrate that these approaches yield more robust models as demonstrated on a selection of realistic problems. In the third and final part of this thesis, we explore ways of efficiently adapting existing models to new domains or tasks. Our contribution to this topic takes inspiration from information geometry to derive a new gradient update rule which alleviate catastrophic forgetting issues during adaptation.
Sampling methods (e.g., node-wise, layer-wise, or subgraph) has become an indispensable strategy to speed up training large-scale Graph Neural Networks (GNNs). However, existing sampling methods are mostly based on the graph structural information and ignore the dynamicity of optimization, which leads to high variance in estimating the stochastic gradients. The high variance issue can be very pronounced in extremely large graphs, where it results in slow convergence and poor generalization. In this paper, we theoretically analyze the variance of sampling methods and show that, due to the composite structure of empirical risk, the variance of any sampling method can be decomposed into \textit{embedding approximation variance} in the forward stage and \textit{stochastic gradient variance} in the backward stage that necessities mitigating both types of variance to obtain faster convergence rate. We propose a decoupled variance reduction strategy that employs (approximate) gradient information to adaptively sample nodes with minimal variance, and explicitly reduces the variance introduced by embedding approximation. We show theoretically and empirically that the proposed method, even with smaller mini-batch sizes, enjoys a faster convergence rate and entails a better generalization compared to the existing methods.
Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.