This paper introduces Structured Noise Space GAN (SNS-GAN), a novel approach in the field of generative modeling specifically tailored for class-conditional generation in both image and time series data. It addresses the challenge of effectively integrating class labels into generative models without requiring structural modifications to the network. The SNS-GAN method embeds class conditions within the generator's noise space, simplifying the training process and enhancing model versatility. The model's efficacy is demonstrated through qualitative validations in the image domain and superior performance in time series generation compared to baseline models. This research opens new avenues for the application of GANs in various domains, including but not limited to time series and image data generation.
This article introduces an experimental emulation of a novel chunk-based flexible multi-DoF aerial 3D printing framework. The experimental demonstration of the overall autonomy focuses on precise motion planning and task allocation for a UAV, traversing through a series of planned space-filling paths involved in the aerial 3D printing process without physically depositing the overlaying material. The flexible multi-DoF aerial 3D printing is a newly developed framework and has the potential to strategically distribute the envisioned 3D model to be printed into small, manageable chunks suitable for distributed 3D printing. Moreover, by harnessing the dexterous flexibility due to the 6 DoF motion of UAV, the framework enables the provision of integrating the overall autonomy stack, potentially opening up an entirely new frontier in additive manufacturing. However, it's essential to note that the feasibility of this pioneering concept is still in its very early stage of development, which yet needs to be experimentally verified. Towards this direction, experimental emulation serves as the crucial stepping stone, providing a pseudo mockup scenario by virtual material deposition, helping to identify technological gaps from simulation to reality. Experimental emulation results, supported by critical analysis and discussion, lay the foundation for addressing the technological and research challenges to significantly push the boundaries of the state-of-the-art 3D printing mechanism.
In this paper, we propose R$^3$: Learning Reasoning through Reverse Curriculum Reinforcement Learning (RL), a novel method that employs only outcome supervision to achieve the benefits of process supervision for large language models. The core challenge in applying RL to complex reasoning is to identify a sequence of actions that result in positive rewards and provide appropriate supervision for optimization. Outcome supervision provides sparse rewards for final results without identifying error locations, whereas process supervision offers step-wise rewards but requires extensive manual annotation. R$^3$ overcomes these limitations by learning from correct demonstrations. Specifically, R$^3$ progressively slides the start state of reasoning from a demonstration's end to its beginning, facilitating easier model exploration at all stages. Thus, R$^3$ establishes a step-wise curriculum, allowing outcome supervision to offer step-level signals and precisely pinpoint errors. Using Llama2-7B, our method surpasses RL baseline on eight reasoning tasks by $4.1$ points on average. Notebaly, in program-based reasoning on GSM8K, it exceeds the baseline by $4.2$ points across three backbone models, and without any extra data, Codellama-7B + R$^3$ performs comparable to larger models or closed-source models.
This paper studies the principal components (PC) estimator for high dimensional approximate factor models with weak factors in that the factor loading ($\boldsymbol{\Lambda}^0$) scales sublinearly in the number $N$ of cross-section units, i.e., $\boldsymbol{\Lambda}^{0\top} \boldsymbol{\Lambda}^0 / N^\alpha$ is positive definite in the limit for some $\alpha \in (0,1)$. While the consistency and asymptotic normality of these estimates are by now well known when the factors are strong, i.e., $\alpha=1$, the statistical properties for weak factors remain less explored. Here, we show that the PC estimator maintains consistency and asymptotical normality for any $\alpha\in(0,1)$, provided suitable conditions regarding the dependence structure in the noise are met. This complements earlier result by Onatski (2012) that the PC estimator is inconsistent when $\alpha=0$, and the more recent work by Bai and Ng (2023) who established the asymptotic normality of the PC estimator when $\alpha \in (1/2,1)$. Our proof strategy integrates the traditional eigendecomposition-based approach for factor models with leave-one-out analysis similar in spirit to those used in matrix completion and other settings. This combination allows us to deal with factors weaker than the former and at the same time relax the incoherence and independence assumptions often associated with the later.
This paper proposes SAGD-IV, a novel framework for conducting nonparametric instrumental variable (NPIV) regression by employing stochastic approximate gradients to minimize the projected populational risk. Instrumental Variables (IVs) are widely used in econometrics to address estimation problems in the presence of unobservable confounders, and the Machine Learning community has devoted significant effort to improving existing methods and devising new ones in the NPIV setting, which is known to be an ill-posed linear inverse problem. We provide theoretical support for our algorithm and further exemplify its competitive performance through empirical experiments. Furthermore, we address, with promising results, the case of binary outcomes, which has not received as much attention from the community as its continuous counterpart.
This paper introduces a novel approach to leverage the generalizability capability of Diffusion Models for Source-Free Domain Adaptation (DM-SFDA). Our proposed DM-SFDA method involves fine-tuning a pre-trained text-to-image diffusion model to generate source domain images using features from the target images to guide the diffusion process. Specifically, the pre-trained diffusion model is fine-tuned to generate source samples that minimize entropy and maximize confidence for the pre-trained source model. We then apply established unsupervised domain adaptation techniques to align the generated source images with target domain data. We validate our approach through comprehensive experiments across a range of datasets, including Office-31, Office-Home, and VisDA. The results highlight significant improvements in SFDA performance, showcasing the potential of diffusion models in generating contextually relevant, domain-specific images.
This paper presents RTLFixer, a novel framework enabling automatic syntax errors fixing for Verilog code with Large Language Models (LLMs). Despite LLM's promising capabilities, our analysis indicates that approximately 55% of errors in LLM-generated Verilog are syntax-related, leading to compilation failures. To tackle this issue, we introduce a novel debugging framework that employs Retrieval-Augmented Generation (RAG) and ReAct prompting, enabling LLMs to act as autonomous agents in interactively debugging the code with feedback. This framework demonstrates exceptional proficiency in resolving syntax errors, successfully correcting about 98.5% of compilation errors in our debugging dataset, comprising 212 erroneous implementations derived from the VerilogEval benchmark. Our method leads to 32.3% and 10.1% increase in pass@1 success rates in the VerilogEval-Machine and VerilogEval-Human benchmarks, respectively.
This paper introduces the Definite Finite Automaton augmented large language model (DFA-LLM), a novel framework designed to enhance the capabilities of conversational agents using large language models (LLMs). Traditional LLMs face challenges in generating regulated and compliant responses in special scenarios with predetermined response guidelines, like emotional support and customer service. Our framework addresses these challenges by embedding a Definite Finite Automaton (DFA), learned from training dialogues, within the LLM. This structured approach enables the LLM to adhere to a deterministic response pathway, guided by the DFA. The advantages of DFA-LLM include an interpretable structure through human-readable DFA, context-aware retrieval for responses in conversations, and plug-and-play compatibility with existing LLMs. Extensive benchmarks validate DFA-LLM's effectiveness, indicating its potential as a valuable contribution to the conversational agent.
As Large Language Models make a breakthrough in natural language processing tasks (NLP), multimodal technique becomes extremely popular. However, it has been shown that multimodal NLP are vulnerable to adversarial attacks, where the outputs of a model can be dramatically changed by a perturbation to the input. While several defense techniques have been proposed both in computer vision and NLP models, the multimodal robustness of models have not been fully explored. In this paper, we study the adversarial robustness provided by modifying loss function of pre-trained multimodal models, by restricting top K softmax outputs. Based on the evaluation and scoring, our experiments show that after a fine-tuning, adversarial robustness of pre-trained models can be significantly improved, against popular attacks. Further research should be studying, such as output diversity, generalization and the robustness-performance trade-off of this kind of loss functions. Our code will be available after this paper is accepted
Large Language Models (LLMs) hold the potential to perform a variety of text processing tasks and provide textual explanations for proposed actions or decisions. In the era of hybrid work, LLMs can provide intelligent decision support for workers who are designing their hybrid work plans. In particular, they can offer suggestions and explanations to workers balancing numerous decision factors, thereby enhancing their work experience. In this paper, we present a decision support model for workspaces in hybrid work environments, leveraging the reasoning skill of LLMs. We first examine LLM's capability of making suitable workspace suggestions. We find that its reasoning extends beyond the guidelines in the prompt and the LLM can manage the trade-off among the available resources in the workspaces. We conduct an extensive user study to understand workers' decision process for workspace choices and evaluate the effectiveness of the system. We observe that a worker's decision could be influenced by the LLM's suggestions and explanations. The participants in our study find the system to be convenient, regardless of whether reasons are provided or not. Our results show that employees can benefit from the LLM-empowered system for their workspace selection in hybrid workplace.
In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.