亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Fine-tuning language models in a downstream task is the standard approach for many state-of-the-art methodologies in the field of NLP. However, when the distribution between the source task and target task drifts, \textit{e.g.}, conversational environments, these gains tend to be diminished. This article proposes a sequence of pre-training steps (a curriculum) guided by "data hacking" and grammar analysis that allows further gradual adaptation between pre-training distributions. In our experiments, we acquire a considerable improvement from our method compared to other known pre-training approaches for the MultiWoZ task.

相關內容

遷(qian)移(yi)學(xue)(xue)習(xi)(Transfer Learning)是(shi)(shi)一(yi)種機(ji)器學(xue)(xue)習(xi)方法,是(shi)(shi)把(ba)一(yi)個(ge)領域(即源領域)的(de)(de)(de)(de)知(zhi)識(shi)(shi)(shi)(shi),遷(qian)移(yi)到另外一(yi)個(ge)領域(即目標(biao)領域),使得目標(biao)領域能夠(gou)取得更好的(de)(de)(de)(de)學(xue)(xue)習(xi)效果。遷(qian)移(yi)學(xue)(xue)習(xi)(TL)是(shi)(shi)機(ji)器學(xue)(xue)習(xi)(ML)中的(de)(de)(de)(de)一(yi)個(ge)研究問題(ti),著(zhu)重(zhong)于(yu)存儲在(zai)解決一(yi)個(ge)問題(ti)時獲得的(de)(de)(de)(de)知(zhi)識(shi)(shi)(shi)(shi)并將其(qi)應用于(yu)另一(yi)個(ge)但相關(guan)的(de)(de)(de)(de)問題(ti)。例如,在(zai)學(xue)(xue)習(xi)識(shi)(shi)(shi)(shi)別汽車時獲得的(de)(de)(de)(de)知(zhi)識(shi)(shi)(shi)(shi)可以在(zai)嘗試識(shi)(shi)(shi)(shi)別卡車時應用。盡管這(zhe)兩個(ge)領域之間的(de)(de)(de)(de)正式聯(lian)系(xi)是(shi)(shi)有(you)限的(de)(de)(de)(de),但這(zhe)一(yi)領域的(de)(de)(de)(de)研究與心理(li)學(xue)(xue)文獻(xian)關(guan)于(yu)學(xue)(xue)習(xi)轉(zhuan)(zhuan)移(yi)的(de)(de)(de)(de)悠久歷(li)史有(you)關(guan)。從實踐的(de)(de)(de)(de)角度來看,為學(xue)(xue)習(xi)新任務而重(zhong)用或轉(zhuan)(zhuan)移(yi)先前學(xue)(xue)習(xi)的(de)(de)(de)(de)任務中的(de)(de)(de)(de)信息可能會(hui)顯著(zhu)提高強化學(xue)(xue)習(xi)代理(li)的(de)(de)(de)(de)樣(yang)本效率。

知識薈萃

精品入門(men)和(he)進階教程(cheng)、論(lun)文和(he)代(dai)碼整理(li)等

更多

查看相關VIP內容、論文(wen)、資(zi)訊(xun)等

We present a novel method for initializing layers of tensorized neural networks in a way that avoids the explosion of the parameters of the matrix it emulates. The method is intended for layers with a high number of nodes in which there is a connection to the input or output of all or most of the nodes. The core of this method is the use of the Frobenius norm of this layer in an iterative partial form, so that it has to be finite and within a certain range. This norm is efficient to compute, fully or partially for most cases of interest. We apply the method to different layers and check its performance. We create a Python function to run it on an arbitrary layer, available in a Jupyter Notebook in the i3BQuantum repository: //github.com/i3BQuantumTeam/Q4Real/blob/e07c827651ef16bcf74590ab965ea3985143f891/Quantum-Inspired%20Variational%20Methods/Normalization_process.ipynb

Diffusion models have gained prominence in the image domain for their capabilities in data generation and transformation, achieving state-of-the-art performance in various tasks in both image and audio domains. In the rapidly evolving field of audio-based machine learning, safeguarding model integrity and establishing data copyright are of paramount importance. This paper presents the first watermarking technique applied to audio diffusion models trained on mel-spectrograms. This offers a novel approach to the aforementioned challenges. Our model excels not only in benign audio generation, but also incorporates an invisible watermarking trigger mechanism for model verification. This watermark trigger serves as a protective layer, enabling the identification of model ownership and ensuring its integrity. Through extensive experiments, we demonstrate that invisible watermark triggers can effectively protect against unauthorized modifications while maintaining high utility in benign audio generation tasks.

Quantum based systems are a relatively new research area for that different modelling languages including process calculi are currently under development. Encodings are often used to compare process calculi. Quality criteria are used then to rule out trivial or meaningless encodings. In this new context of quantum based systems, it is necessary to analyse the applicability of these quality criteria and to potentially extend or adapt them. As a first step, we test the suitability of classical criteria for encodings between quantum based languages and discuss new criteria. Concretely, we present an encoding, from a language inspired by CQP into a language inspired by qCCS. We show that this encoding satisfies compositionality, name invariance (for channel and qubit names), operational correspondence, divergence reflection, success sensitiveness, and that it preserves the size of quantum registers. Then we show that there is no encoding from qCCS into CQP that is compositional, operationally corresponding, and success sensitive.

This paper explicitly models a coarse and noisy quantization in a communication system empowered by orthogonal time frequency space (OTFS) for cost and power efficiency. We first point out, with coarse quantization, the effective channel is imbalanced and thus no longer able to circularly shift the transmitted symbols along the delay-Doppler domain. Meanwhile, the effective channel is non-isotropic, which imposes a significant loss to symbol detection algorithms like the original approximate message passing (AMP). Although the algorithm of generalized expectation consistent for signal recovery (GEC-SR) can mitigate this loss, the complexity in computation is prohibitively high, mainly due to an dramatic increase in the matrix size of OTFS. In this context, we propose a low-complexity algorithm that incorporates into the GEC-SR a quick inversion of quasi-banded matrices, reducing the complexity from a cubic order to a linear order while keeping the performance at the same level.

While large language models (LLMs) have demonstrated impressive performance in question-answering tasks, their performance is limited when the questions require knowledge that is not included in the model's training data and can only be acquired through direct observation or interaction with the real world. Existing methods decompose reasoning tasks through the use of modules invoked sequentially, limiting their ability to answer deep reasoning tasks. We introduce a method, Recursion based extensible LLM (REBEL), which handles open-world, deep reasoning tasks by employing automated reasoning techniques like dynamic planning and forward-chaining strategies. REBEL allows LLMs to reason via recursive problem decomposition and utilization of external tools. The tools that REBEL uses are specified only by natural language description. We further demonstrate REBEL capabilities on a set of problems that require a deeply nested use of external tools in a compositional and conversational setting.

Humans perceive the world by concurrently processing and fusing high-dimensional inputs from multiple modalities such as vision and audio. Machine perception models, in stark contrast, are typically modality-specific and optimised for unimodal benchmarks, and hence late-stage fusion of final representations or predictions from each modality (`late-fusion') is still a dominant paradigm for multimodal video classification. Instead, we introduce a novel transformer based architecture that uses `fusion bottlenecks' for modality fusion at multiple layers. Compared to traditional pairwise self-attention, our model forces information between different modalities to pass through a small number of bottleneck latents, requiring the model to collate and condense the most relevant information in each modality and only share what is necessary. We find that such a strategy improves fusion performance, at the same time reducing computational cost. We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks including Audioset, Epic-Kitchens and VGGSound. All code and models will be released.

Embedding entities and relations into a continuous multi-dimensional vector space have become the dominant method for knowledge graph embedding in representation learning. However, most existing models ignore to represent hierarchical knowledge, such as the similarities and dissimilarities of entities in one domain. We proposed to learn a Domain Representations over existing knowledge graph embedding models, such that entities that have similar attributes are organized into the same domain. Such hierarchical knowledge of domains can give further evidence in link prediction. Experimental results show that domain embeddings give a significant improvement over the most recent state-of-art baseline knowledge graph embedding models.

Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.

We advocate the use of implicit fields for learning generative models of shapes and introduce an implicit field decoder for shape generation, aimed at improving the visual quality of the generated shapes. An implicit field assigns a value to each point in 3D space, so that a shape can be extracted as an iso-surface. Our implicit field decoder is trained to perform this assignment by means of a binary classifier. Specifically, it takes a point coordinate, along with a feature vector encoding a shape, and outputs a value which indicates whether the point is outside the shape or not. By replacing conventional decoders by our decoder for representation learning and generative modeling of shapes, we demonstrate superior results for tasks such as shape autoencoding, generation, interpolation, and single-view 3D reconstruction, particularly in terms of visual quality.

Deep learning has yielded state-of-the-art performance on many natural language processing tasks including named entity recognition (NER). However, this typically requires large amounts of labeled data. In this work, we demonstrate that the amount of labeled training data can be drastically reduced when deep learning is combined with active learning. While active learning is sample-efficient, it can be computationally expensive since it requires iterative retraining. To speed this up, we introduce a lightweight architecture for NER, viz., the CNN-CNN-LSTM model consisting of convolutional character and word encoders and a long short term memory (LSTM) tag decoder. The model achieves nearly state-of-the-art performance on standard datasets for the task while being computationally much more efficient than best performing models. We carry out incremental active learning, during the training process, and are able to nearly match state-of-the-art performance with just 25\% of the original training data.

北京阿比特科技有限公司