亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Finding efficient tensor contraction paths is essential for a wide range of problems, including model counting, quantum circuits, graph problems, and language models. There exist several approaches to find efficient paths, such as the greedy and random greedy algorithm by Optimized Einsum (opt_einsum), and the greedy algorithm and hypergraph partitioning approach employed in cotengra. However, these algorithms require a lot of computational time and resources to find efficient contraction paths. In this paper, we introduce a novel approach based on the greedy algorithm by opt_einsum that computes efficient contraction paths in less time. Moreover, with our approach, we are even able to compute paths for large problems where modern algorithms fail.

相關內容

Large language models (LLMs) exhibit a variety of promising capabilities in robotics, including long-horizon planning and commonsense reasoning. However, their performance in place recognition is still underexplored. In this work, we introduce multimodal LLMs (MLLMs) to visual place recognition (VPR), where a robot must localize itself using visual observations. Our key design is to use vision-based retrieval to propose several candidates and then leverage language-based reasoning to carefully inspect each candidate for a final decision. Specifically, we leverage the robust visual features produced by off-the-shelf vision foundation models (VFMs) to obtain several candidate locations. We then prompt an MLLM to describe the differences between the current observation and each candidate in a pairwise manner, and reason about the best candidate based on these descriptions. Our results on three datasets demonstrate that integrating the general-purpose visual features from VFMs with the reasoning capabilities of MLLMs already provides an effective place recognition solution, without any VPR-specific supervised training. We believe our work can inspire new possibilities for applying and designing foundation models, i.e., VFMs, LLMs, and MLLMs, to enhance the localization and navigation of mobile robots.

A reliable knowledge structure is a prerequisite for building effective adaptive learning systems and intelligent tutoring systems. Pursuing an explainable and trustworthy knowledge structure, we propose a method for constructing causal knowledge networks. This approach leverages Bayesian networks as a foundation and incorporates causal relationship analysis to derive a causal network. Additionally, we introduce a dependable knowledge-learning path recommendationHuman-Centric eXplainable AI in Education technique built upon this framework, improving teaching and learning quality while maintaining transparency in the decision-making process.

Molecular modeling, a central topic in quantum mechanics, aims to accurately calculate the properties and simulate the behaviors of molecular systems. The molecular model is governed by physical laws, which impose geometric constraints such as invariance and equivariance to coordinate rotation and translation. While numerous deep learning approaches have been developed to learn molecular representations under these constraints, most of them are built upon heuristic and costly modules. We argue that there is a strong need for a general and flexible framework for learning both invariant and equivariant features. In this work, we introduce a novel Transformer-based molecular model called GeoMFormer to achieve this goal. Using the standard Transformer modules, two separate streams are developed to maintain and learn invariant and equivariant representations. Carefully designed cross-attention modules bridge the two streams, allowing information fusion and enhancing geometric modeling in each stream. As a general and flexible architecture, we show that many previous architectures can be viewed as special instantiations of GeoMFormer. Extensive experiments are conducted to demonstrate the power of GeoMFormer. All empirical results show that GeoMFormer achieves strong performance on both invariant and equivariant tasks of different types and scales. Code and models will be made publicly available at //github.com/c-tl/GeoMFormer.

In the field of dynamic functional connectivity, the sliding-window method is widely used and its stability is generally recognized. However, the sliding-window method's data processing within the window is overly simplistic, which to some extent limits its effectiveness. This study proposes a feature expansion method based on random convolution, which achieves better and more noise-resistant results than the sliding-window method without requiring training. Experiments on simulated data show that the dynamic functional connectivity matrix and time series obtained using the random convolution method have a higher degree of fit (95.59\%) with the standard answers within shorter time windows, compared to the sliding-window method (45.99\%). Gender difference studies on real data also reveal that the random convolution method uncovers more gender differences than the sliding-window method. Through theoretical analysis, we propose a more comprehensive convolutional functional connectivity computation model, with the sliding-window method being a special case of this model, thereby opening up vast potential for research methods in dynamic functional connectivity.

Human motion copy is an intriguing yet challenging task in artificial intelligence and computer vision, which strives to generate a fake video of a target person performing the motion of a source person. The problem is inherently challenging due to the subtle human-body texture details to be generated and the temporal consistency to be considered. Existing approaches typically adopt a conventional GAN with an L1 or L2 loss to produce the target fake video, which intrinsically necessitates a large number of training samples that are challenging to acquire. Meanwhile, current methods still have difficulties in attaining realistic image details and temporal consistency, which unfortunately can be easily perceived by human observers. Motivated by this, we try to tackle the issues from three aspects: (1) We constrain pose-to-appearance generation with a perceptual loss and a theoretically motivated Gromov-Wasserstein loss to bridge the gap between pose and appearance. (2) We present an episodic memory module in the pose-to-appearance generation to propel continuous learning that helps the model learn from its past poor generations. We also utilize geometrical cues of the face to optimize facial details and refine each key body part with a dedicated local GAN. (3) We advocate generating the foreground in a sequence-to-sequence manner rather than a single-frame manner, explicitly enforcing temporal inconsistency. Empirical results on five datasets, iPER, ComplexMotion, SoloDance, Fish, and Mouse datasets, demonstrate that our method is capable of generating realistic target videos while precisely copying motion from a source video. Our method significantly outperforms state-of-the-art approaches and gains 7.2% and 12.4% improvements in PSNR and FID respectively.

We consider experimentation in the presence of non-stationarity, inter-unit (spatial) interference, and carry-over effects (temporal interference), where we wish to estimate the global average treatment effect (GATE), the difference between average outcomes having exposed all units at all times to treatment or to control. We suppose spatial interference is described by a graph, where a unit's outcome depends on its neighborhood's treatment assignments, and that temporal interference is described by a hidden Markov decision process, where the transition kernel under either treatment (action) satisfies a rapid mixing condition. We propose a clustered switchback design, where units are grouped into clusters and time steps are grouped into blocks and each whole cluster-block combination is assigned a single random treatment. Under this design, we show that for graphs that admit good clustering, a truncated exposure-mapping Horvitz-Thompson estimator achieves $\tilde O(1/NT)$ mean-squared error (MSE), matching an $\Omega(1/NT)$ lower bound up to logarithmic terms. Our results simultaneously generalize the $N=1$ setting of Hu, Wager 2022 (and improves on the MSE bound shown therein for difference-in-means estimators) as well as the $T=1$ settings of Ugander et al 2013 and Leung 2022. Simulation studies validate the favorable performance of our approach.

Newly diagnosed Type 1 Diabetes (T1D) patients often struggle to obtain effective Blood Glucose (BG) prediction models due to the lack of sufficient BG data from Continuous Glucose Monitoring (CGM), presenting a significant "cold start" problem in patient care. Utilizing population models to address this challenge is a potential solution, but collecting patient data for training population models in a privacy-conscious manner is challenging, especially given that such data is often stored on personal devices. Considering the privacy protection and addressing the "cold start" problem in diabetes care, we propose "GluADFL", blood Glucose prediction by Asynchronous Decentralized Federated Learning. We compared GluADFL with eight baseline methods using four distinct T1D datasets, comprising 298 participants, which demonstrated its superior performance in accurately predicting BG levels for cross-patient analysis. Furthermore, patients' data might be stored and shared across various communication networks in GluADFL, ranging from highly interconnected (e.g., random, performs the best among others) to more structured topologies (e.g., cluster and ring), suitable for various social networks. The asynchronous training framework supports flexible participation. By adjusting the ratios of inactive participants, we found it remains stable if less than 70% are inactive. Our results confirm that GluADFL offers a practical, privacy-preserving solution for BG prediction in T1D, significantly enhancing the quality of diabetes management.

Regression discontinuity design (RDD) is widely adopted for causal inference under intervention determined by a continuous variable. While one is interested in treatment effect heterogeneity by subgroups in many applications, RDD typically suffers from small subgroup-wise sample sizes, which makes the estimation results highly instable. To solve this issue, we introduce hierarchical RDD (HRDD), a hierarchical Bayes approach for pursuing treatment effect heterogeneity in RDD. A key feature of HRDD is to employ a pseudo-model based on a loss function to estimate subgroup-level parameters of treatment effects under RDD, and assign a hierarchical prior distribution to ''borrow strength'' from other subgroups. The posterior computation can be easily done by a simple Gibbs sampling, and the optimal bandwidth can be automatically selected by the Hyv\"{a}rinen scores for unnormalized models. We demonstrate the proposed HRDD through simulation and real data analysis, and show that HRDD provides much more stable point and interval estimation than separately applying the standard RDD method to each subgroup.

Recent advances in discriminative and generative pretraining have yielded geometry estimation models with strong generalization capabilities. While discriminative monocular geometry estimation methods rely on large-scale fine-tuning data to achieve zero-shot generalization, several generative-based paradigms show the potential of achieving impressive generalization performance on unseen scenes by leveraging pre-trained diffusion models and fine-tuning on even a small scale of synthetic training data. Frustratingly, these models are trained with different recipes on different datasets, making it hard to find out the critical factors that determine the evaluation performance. Besides, current geometry evaluation benchmarks have two main drawbacks that may prevent the development of the field, i.e., limited scene diversity and unfavorable label quality. To resolve the above issues, (1) we build fair and strong baselines in a unified codebase for evaluating and analyzing the geometry estimation models; (2) we evaluate monocular geometry estimators on more challenging benchmarks for geometry estimation task with diverse scenes and high-quality annotations. Our results reveal that pre-trained using large data, discriminative models such as DINOv2, can outperform generative counterparts with a small amount of high-quality synthetic data under the same training configuration, which suggests that fine-tuning data quality is a more important factor than the data scale and model architecture. Our observation also raises a question: if simply fine-tuning a general vision model such as DINOv2 using a small amount of synthetic depth data produces SOTA results, do we really need complex generative models for depth estimation? We believe this work can propel advancements in geometry estimation tasks as well as a wide range of downstream applications.

This study introduces a generative imputation model leveraging graph attention networks and tabular diffusion models for completing missing parametric data in engineering designs. This model functions as an AI design co-pilot, providing multiple design options for incomplete designs, which we demonstrate using the bicycle design CAD dataset. Through comparative evaluations, we demonstrate that our model significantly outperforms existing classical methods, such as MissForest, hotDeck, PPCA, and tabular generative method TabCSDI in both the accuracy and diversity of imputation options. Generative modeling also enables a broader exploration of design possibilities, thereby enhancing design decision-making by allowing engineers to explore a variety of design completions. The graph model combines GNNs with the structural information contained in assembly graphs, enabling the model to understand and predict the complex interdependencies between different design parameters. The graph model helps accurately capture and impute complex parametric interdependencies from an assembly graph, which is key for design problems. By learning from an existing dataset of designs, the imputation capability allows the model to act as an intelligent assistant that autocompletes CAD designs based on user-defined partial parametric design, effectively bridging the gap between ideation and realization. The proposed work provides a pathway to not only facilitate informed design decisions but also promote creative exploration in design.

北京阿比特科技有限公司