亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Measurement error is a pervasive issue which renders the results of an analysis unreliable. The measurement error literature contains numerous correction techniques, which can be broadly divided into those which aim to produce exactly consistent estimators, and those which are only approximately consistent. While consistency is a desirable property, it is typically attained only under specific model assumptions. Two techniques, regression calibration and simulation extrapolation, are used frequently in a wide variety of parametric and semiparametric settings. However, in many settings these methods are only approximately consistent. We generalize these corrections, relaxing assumptions placed on replicate measurements. Under regularity conditions, the estimators are shown to be asymptotically normal, with a sandwich estimator for the asymptotic variance. Through simulation, we demonstrate the improved performance of the modified estimators, over the standard techniques, when these assumptions are violated. We motivate these corrections using the Framingham Heart Study, and apply the generalized techniques to an analysis of these data.

相關內容

Safe exploration is a key to applying reinforcement learning (RL) in safety-critical systems. Existing safe exploration methods guaranteed safety under the assumption of regularity, and it has been difficult to apply them to large-scale real problems. We propose a novel algorithm, SPO-LF, that optimizes an agent's policy while learning the relation between a locally available feature obtained by sensors and environmental reward/safety using generalized linear function approximations. We provide theoretical guarantees on its safety and optimality. We experimentally show that our algorithm is 1) more efficient in terms of sample complexity and computational cost and 2) more applicable to large-scale problems than previous safe RL methods with theoretical guarantees, and 3) comparably sample-efficient and safer compared with existing advanced deep RL methods with safety constraints.

Precision medicine aims to tailor treatment decisions according to patients' characteristics. G-estimation and dynamic weighted ordinary least squares (dWOLS) are double robust statistical methods that can be used to identify optimal adaptive treatment strategies. They require both a model for the outcome and a model for the treatment and are consistent if at least one of these models is correctly specified. It is underappreciated that these methods additionally require modeling all existing treatment-confounder interactions to yield consistent estimators. Identifying partially adaptive treatment strategies that tailor treatments according to only a few covariates, ignoring some interactions, may be preferable in practice. It has been proposed to combine inverse probability weighting and G-estimation to address this issue, but we argue that the resulting estimator is not expected to be double robust. Building on G-estimation and dWOLS, we propose alternative estimators of partially adaptive strategies and demonstrate their double robustness. We investigate and compare the empirical performance of six estimators in a simulation study. As expected, estimators combining inverse probability weighting with either G-estimation or dWOLS are biased when the treatment model is incorrectly specified. The other estimators are unbiased if either the treatment or the outcome model are correctly specified and have similar standard errors. Using data maintained by the Centre des Maladies du Sein, the methods are illustrated to estimate a partially adaptive treatment strategy for tailoring hormonal therapy use in breast cancer patients according to their estrogen receptor status and body mass index. R software implementing our estimators is provided.

We propose a definition of persistent Stiefel-Whitney classes of vector bundle filtrations. It relies on seeing vector bundles as subsets of some Euclidean spaces. The usual \v{C}ech filtration of such a subset can be endowed with a vector bundle structure, that we call a \v{C}ech bundle filtration. We show that this construction is stable and consistent. When the dataset is a finite sample of a line bundle, we implement an effective algorithm to compute its persistent Stiefel-Whitney classes. In order to use simplicial approximation techniques in practice, we develop a notion of weak simplicial approximation. As a theoretical example, we give an in-depth study of the normal bundle of the circle, which reduces to understanding the persistent cohomology of the torus knot (1,2). We illustrate our method on several datasets inspired by image analysis.

To explain the decision of any model, we extend the notion of probabilistic Sufficient Explanations (P-SE). For each instance, this approach selects the minimal subset of features that is sufficient to yield the same prediction with high probability, while removing other features. The crux of P-SE is to compute the conditional probability of maintaining the same prediction. Therefore, we introduce an accurate and fast estimator of this probability via random Forests for any data $(\boldsymbol{X}, Y)$ and show its efficiency through a theoretical analysis of its consistency. As a consequence, we extend the P-SE to regression problems. In addition, we deal with non-binary features, without learning the distribution of $X$ nor having the model for making predictions. Finally, we introduce local rule-based explanations for regression/classification based on the P-SE and compare our approaches w.r.t other explainable AI methods. These methods are publicly available as a Python package at \url{www.github.com/salimamoukou/acv00}.

We introduce a new test for conditional independence which is based on what we call the weighted generalised covariance measure (WGCM). It is an extension of the recently introduced generalised covariance measure (GCM). To test the null hypothesis of X and Y being conditionally independent given Z, our test statistic is a weighted form of the sample covariance between the residuals of nonlinearly regressing X and Y on Z. We propose different variants of the test for both univariate and multivariate X and Y. We give conditions under which the tests yield the correct type I error rate. Finally, we compare our novel tests to the original GCM using simulation and on real data sets. Typically, our tests have power against a wider class of alternatives compared to the GCM. This comes at the cost of having less power against alternatives for which the GCM already works well.

This study concerns probability distribution estimation of sample maximum. The traditional approach is the parametric fitting to the limiting distribution - the generalized extreme value distribution; however, the model in finite cases is misspecified to a certain extent. We propose a plug-in type of nonparametric estimator which does not need model specification. It is proved that both asymptotic convergence rates depend on the tail index and the second order parameter. As the tail gets light, the degree of misspecification of the parametric fitting becomes large, that means the convergence rate becomes slow. In the Weibull cases, which can be seen as the limit of tail-lightness, only the nonparametric distribution estimator keeps its consistency. Finally, we report the results of numerical experiments.

We study bilateral trade between two strategic agents. The celebrated result of Myerson and Satterthwaite states that in general, no incentive-compatible, individually rational and weakly budget balanced mechanism can be efficient. I.e., no mechanism with these properties can guarantee a trade whenever buyer value exceeds seller cost. Given this, a natural question is whether there exists a mechanism with these properties that guarantees a constant fraction of the first-best gains-from-trade, namely a constant fraction of the gains-from-trade attainable whenever buyer's value weakly exceeds seller's cost. In this work, we positively resolve this long-standing open question on constant-factor approximation, mentioned in several previous works, using a simple mechanism.

We propose a doubly robust approach to characterizing treatment effect heterogeneity in observational studies. We utilize posterior distributions for both the propensity score and outcome regression models to provide valid inference on the conditional average treatment effect even when high-dimensional or nonparametric models are used. We show that our approach leads to conservative inference in finite samples or under model misspecification, and provides a consistent variance estimator when both models are correctly specified. In simulations, we illustrate the utility of these results in difficult settings such as high-dimensional covariate spaces or highly flexible models for the propensity score and outcome regression. Lastly, we analyze environmental exposure data from NHANES to identify how the effects of these exposures vary by subject-level characteristics.

We provide (high probability) bounds on the condition number of random feature matrices. In particular, we show that if the complexity ratio $\frac{N}{m}$ where $N$ is the number of neurons and $m$ is the number of data samples scales like $\log^{-1}(N)$ or $\log(m)$, then the random feature matrix is well-conditioned. This result holds without the need of regularization and relies on establishing various concentration bounds between dependent components of the random feature matrix. Additionally, we derive bounds on the restricted isometry constant of the random feature matrix. We prove that the risk associated with regression problems using a random feature matrix exhibits the double descent phenomenon and that this is an effect of the double descent behavior of the condition number. The risk bounds include the underparameterized setting using the least squares problem and the overparameterized setting where using either the minimum norm interpolation problem or a sparse regression problem. For the least squares or sparse regression cases, we show that the risk decreases as $m$ and $N$ increase, even in the presence of bounded or random noise. The risk bound matches the optimal scaling in the literature and the constants in our results are explicit and independent of the dimension of the data.

In order to avoid the curse of dimensionality, frequently encountered in Big Data analysis, there was a vast development in the field of linear and nonlinear dimension reduction techniques in recent years. These techniques (sometimes referred to as manifold learning) assume that the scattered input data is lying on a lower dimensional manifold, thus the high dimensionality problem can be overcome by learning the lower dimensionality behavior. However, in real life applications, data is often very noisy. In this work, we propose a method to approximate $\mathcal{M}$ a $d$-dimensional $C^{m+1}$ smooth submanifold of $\mathbb{R}^n$ ($d \ll n$) based upon noisy scattered data points (i.e., a data cloud). We assume that the data points are located "near" the lower dimensional manifold and suggest a non-linear moving least-squares projection on an approximating $d$-dimensional manifold. Under some mild assumptions, the resulting approximant is shown to be infinitely smooth and of high approximation order (i.e., $O(h^{m+1})$, where $h$ is the fill distance and $m$ is the degree of the local polynomial approximation). The method presented here assumes no analytic knowledge of the approximated manifold and the approximation algorithm is linear in the large dimension $n$. Furthermore, the approximating manifold can serve as a framework to perform operations directly on the high dimensional data in a computationally efficient manner. This way, the preparatory step of dimension reduction, which induces distortions to the data, can be avoided altogether.

北京阿比特科技有限公司