亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Large Language Models (LLMs) present a promising frontier in robotic task planning by leveraging extensive human knowledge. Nevertheless, the current literature often overlooks the critical aspects of adaptability and error correction within robotic systems. This work aims to overcome this limitation by enabling robots to modify their motion strategies and select the most suitable task plans based on the context. We introduce a novel framework termed action contextualization, aimed at tailoring robot actions to the precise requirements of specific tasks, thereby enhancing adaptability through applying LLM-derived contextual insights. Our proposed motion metrics guarantee the feasibility and efficiency of adjusted motions, which evaluate robot performance and eliminate planning redundancies. Moreover, our framework supports online feedback between the robot and the LLM, enabling immediate modifications to the task plans and corrections of errors. Our framework has achieved an overall success rate of 81.25% through extensive validation. Finally, integrated with dynamic system (DS)-based robot controllers, the robotic arm-hand system demonstrates its proficiency in autonomously executing LLM-generated motion plans for sequential table-clearing tasks, rectifying errors without human intervention, and completing tasks, showcasing robustness against external disturbances. Our proposed framework features the potential to be integrated with modular control approaches, significantly enhancing robots' adaptability and autonomy in sequential task execution.

相關內容

機(ji)(ji)(ji)(ji)器(qi)人(英語:Robot)包括一切模擬人類(lei)行為或(huo)(huo)思想與模擬其他生物的機(ji)(ji)(ji)(ji)械(xie)(如機(ji)(ji)(ji)(ji)器(qi)狗,機(ji)(ji)(ji)(ji)器(qi)貓等(deng))。狹(xia)義上對機(ji)(ji)(ji)(ji)器(qi)人的定(ding)義還有(you)(you)很多分類(lei)法及爭議,有(you)(you)些(xie)電腦程(cheng)序(xu)(xu)甚至(zhi)也被(bei)稱為機(ji)(ji)(ji)(ji)器(qi)人。在當(dang)代工(gong)業中(zhong),機(ji)(ji)(ji)(ji)器(qi)人指能自動運行任(ren)務的人造(zao)機(ji)(ji)(ji)(ji)器(qi)設(she)備(bei),用(yong)以(yi)取代或(huo)(huo)協助人類(lei)工(gong)作,一般會是機(ji)(ji)(ji)(ji)電設(she)備(bei),由計算機(ji)(ji)(ji)(ji)程(cheng)序(xu)(xu)或(huo)(huo)是電子電路控(kong)制。

知識薈萃

精品入門和進階教程、論文(wen)和代(dai)碼整理等

更多

查看(kan)相關VIP內容(rong)、論文、資(zi)訊等

Solving Constrained Horn Clauses (CHCs) is a fundamental challenge behind a wide range of verification and analysis tasks. Data-driven approaches show great promise in improving CHC solving without the painstaking manual effort of creating and tuning various heuristics. However, a large performance gap exists between data-driven CHC solvers and symbolic reasoning-based solvers. In this work, we develop a simple but effective framework, "Chronosymbolic Learning", which unifies symbolic information and numerical data points to solve a CHC system efficiently. We also present a simple instance of Chronosymbolic Learning with a data-driven learner and a BMC-styled reasoner. Despite its relative simplicity, experimental results show the efficacy and robustness of our tool. It outperforms state-of-the-art CHC solvers on a dataset consisting of 288 benchmarks, including many instances with non-linear integer arithmetics.

Large Language Models (LLMs) have recently shown impressive abilities in handling various natural language-related tasks. Among different LLMs, current studies have assessed ChatGPT's superior performance across manifold tasks, especially under the zero/few-shot prompting conditions. Given such successes, the Recommender Systems (RSs) research community have started investigating its potential applications within the recommendation scenario. However, although various methods have been proposed to integrate ChatGPT's capabilities into RSs, current research struggles to comprehensively evaluate such models while considering the peculiarities of generative models. Often, evaluations do not consider hallucinations, duplications, and out-of-the-closed domain recommendations and solely focus on accuracy metrics, neglecting the impact on beyond-accuracy facets. To bridge this gap, we propose a robust evaluation pipeline to assess ChatGPT's ability as an RS and post-process ChatGPT recommendations to account for these aspects. Through this pipeline, we investigate ChatGPT-3.5 and ChatGPT-4 performance in the recommendation task under the zero-shot condition employing the role-playing prompt. We analyze the model's functionality in three settings: the Top-N Recommendation, the cold-start recommendation, and the re-ranking of a list of recommendations, and in three domains: movies, music, and books. The experiments reveal that ChatGPT exhibits higher accuracy than the baselines on books domain. It also excels in re-ranking and cold-start scenarios while maintaining reasonable beyond-accuracy metrics. Furthermore, we measure the similarity between the ChatGPT recommendations and the other recommenders, providing insights about how ChatGPT could be categorized in the realm of recommender systems. The evaluation pipeline is publicly released for future research.

We introduce SPAFormer, an innovative model designed to overcome the combinatorial explosion challenge in the 3D Part Assembly (3D-PA) task. This task requires accurate prediction of each part's pose and shape in sequential steps, and as the number of parts increases, the possible assembly combinations increase exponentially, leading to a combinatorial explosion that severely hinders the efficacy of 3D-PA. SPAFormer addresses this problem by leveraging weak constraints from assembly sequences, effectively reducing the solution space's complexity. Since assembly part sequences convey construction rules similar to sentences being structured through words, our model explores both parallel and autoregressive generation. It further enhances assembly through knowledge enhancement strategies that utilize the attributes of parts and their sequence information, enabling it to capture the inherent assembly pattern and relationships among sequentially ordered parts. We also construct a more challenging benchmark named PartNet-Assembly covering 21 varied categories to more comprehensively validate the effectiveness of SPAFormer. Extensive experiments demonstrate the superior generalization capabilities of SPAFormer, particularly with multi-tasking and in scenarios requiring long-horizon assembly. Codes and model weights will be released at //github.com/xuboshen/SPAFormer.

Scene Graph Generation (SGG) is a challenging task of detecting objects and predicting relationships between objects. After DETR was developed, one-stage SGG models based on a one-stage object detector have been actively studied. However, complex modeling is used to predict the relationship between objects, and the inherent relationship between object queries learned in the multi-head self-attention of the object detector has been neglected. We propose a lightweight one-stage SGG model that extracts the relation graph from the various relationships learned in the multi-head self-attention layers of the DETR decoder. By fully utilizing the self-attention by-products, the relation graph can be extracted effectively with a shallow relation extraction head. Considering the dependency of the relation extraction task on the object detection task, we propose a novel relation smoothing technique that adjusts the relation label adaptively according to the quality of the detected objects. By the relation smoothing, the model is trained according to the continuous curriculum that focuses on object detection task at the beginning of training and performs multi-task learning as the object detection performance gradually improves. Furthermore, we propose a connectivity prediction task that predicts whether a relation exists between object pairs as an auxiliary task of the relation extraction. We demonstrate the effectiveness and efficiency of our method for the Visual Genome and Open Image V6 datasets. Our code is publicly available at //github.com/naver-ai/egtr.

This paper presents the Firefighter Optimization (FFO) algorithm as a new hybrid metaheuristic for optimization problems. This algorithm stems inspiration from the collaborative strategies often deployed by firefighters in firefighting activities. To evaluate the performance of FFO, extensive experiments were conducted, wherein the FFO was examined against 13 commonly used optimization algorithms, namely, the Ant Colony Optimization (ACO), Bat Algorithm (BA), Biogeography-Based Optimization (BBO), Flower Pollination Algorithm (FPA), Genetic Algorithm (GA), Grey Wolf Optimizer (GWO), Harmony Search (HS), Particle Swarm Optimization (PSO), Simulated Annealing (SA), Tabu Search (TS), and Whale Optimization Algorithm (WOA), and across 24 benchmark functions of various dimensions and complexities. The results demonstrate that FFO achieves comparative performance and, in some scenarios, outperforms commonly adopted optimization algorithms in terms of the obtained fitness, time taken for exaction, and research space covered per unit of time.

Recent advancements in Latent Diffusion Models (LDMs) have propelled them to the forefront of various generative tasks. However, their iterative sampling process poses a significant computational burden, resulting in slow generation speeds and limiting their application in text-to-audio generation deployment. In this work, we introduce AudioLCM, a novel consistency-based model tailored for efficient and high-quality text-to-audio generation. AudioLCM integrates Consistency Models into the generation process, facilitating rapid inference through a mapping from any point at any time step to the trajectory's initial point. To overcome the convergence issue inherent in LDMs with reduced sample iterations, we propose the Guided Latent Consistency Distillation with a multi-step Ordinary Differential Equation (ODE) solver. This innovation shortens the time schedule from thousands to dozens of steps while maintaining sample quality, thereby achieving fast convergence and high-quality generation. Furthermore, to optimize the performance of transformer-based neural network architectures, we integrate the advanced techniques pioneered by LLaMA into the foundational framework of transformers. This architecture supports stable and efficient training, ensuring robust performance in text-to-audio synthesis. Experimental results on text-to-sound generation and text-to-music synthesis tasks demonstrate that AudioLCM needs only 2 iterations to synthesize high-fidelity audios, while it maintains sample quality competitive with state-of-the-art models using hundreds of steps. AudioLCM enables a sampling speed of 333x faster than real-time on a single NVIDIA 4090Ti GPU, making generative models practically applicable to text-to-audio generation deployment. Our extensive preliminary analysis shows that each design in AudioLCM is effective.

As AI systems pervade human life, ensuring that large language models (LLMs) make safe decisions is a significant challenge. This paper introduces the Governance of the Commons Simulation (GovSim), a generative simulation platform designed to study strategic interactions and cooperative decision-making in LLMs. Using GovSim, we investigate the dynamics of sustainable resource sharing in a society of AI agents. This environment allows us to study the influence of ethical considerations, strategic planning, and negotiation skills on cooperative outcomes for AI agents. We develop an LLM-based agent architecture designed for these social dilemmas and test it with a variety of LLMs. We find that all but the most powerful LLM agents fail to achieve a sustainable equilibrium in GovSim. Ablations reveal that successful multi-agent communication between agents is critical for achieving cooperation in these cases. Furthermore, our analyses show that the failure to achieve sustainable cooperation in most LLMs stems from their inability to formulate and analyze hypotheses about the long-term effects of their actions on the equilibrium of the group. Finally, we show that agents that leverage ``Universalization''-based reasoning, a theory of moral thinking, are able to achieve significantly greater sustainability. Taken together, GovSim enables us to study the mechanisms that underlie sustainable self-government with significant specificity and scale. We open source the full suite of our research results, including the simulation environment, agent prompts, and a comprehensive web interface.

An exciting and promising frontier for Deep Reinforcement Learning (DRL) is its application to real-world robotic systems. While modern DRL approaches achieved remarkable successes in many robotic scenarios (including mobile robotics, surgical assistance, and autonomous driving) unpredictable and non-stationary environments can pose critical challenges to such methods. These features can significantly undermine fundamental requirements for a successful training process, such as the Markovian properties of the transition model. To address this challenge, we propose a new benchmarking environment for aquatic navigation using recent advances in the integration between game engines and DRL. In more detail, we show that our benchmarking environment is problematic even for state-of-the-art DRL approaches that may struggle to generate reliable policies in terms of generalization power and safety. Specifically, we focus on PPO, one of the most widely accepted algorithms, and we propose advanced training techniques (such as curriculum learning and learnable hyperparameters). Our extensive empirical evaluation shows that a well-designed combination of these ingredients can achieve promising results. Our simulation environment and training baselines are freely available to facilitate further research on this open problem and encourage collaboration in the field.

Human-in-the-loop aims to train an accurate prediction model with minimum cost by integrating human knowledge and experience. Humans can provide training data for machine learning applications and directly accomplish some tasks that are hard for computers in the pipeline with the help of machine-based approaches. In this paper, we survey existing works on human-in-the-loop from a data perspective and classify them into three categories with a progressive relationship: (1) the work of improving model performance from data processing, (2) the work of improving model performance through interventional model training, and (3) the design of the system independent human-in-the-loop. Using the above categorization, we summarize major approaches in the field, along with their technical strengths/ weaknesses, we have simple classification and discussion in natural language processing, computer vision, and others. Besides, we provide some open challenges and opportunities. This survey intends to provide a high-level summarization for human-in-the-loop and motivates interested readers to consider approaches for designing effective human-in-the-loop solutions.

Meta reinforcement learning (meta-RL) extracts knowledge from previous tasks and achieves fast adaptation to new tasks. Despite recent progress, efficient exploration in meta-RL remains a key challenge in sparse-reward tasks, as it requires quickly finding informative task-relevant experiences in both meta-training and adaptation. To address this challenge, we explicitly model an exploration policy learning problem for meta-RL, which is separated from exploitation policy learning, and introduce a novel empowerment-driven exploration objective, which aims to maximize information gain for task identification. We derive a corresponding intrinsic reward and develop a new off-policy meta-RL framework, which efficiently learns separate context-aware exploration and exploitation policies by sharing the knowledge of task inference. Experimental evaluation shows that our meta-RL method significantly outperforms state-of-the-art baselines on various sparse-reward MuJoCo locomotion tasks and more complex sparse-reward Meta-World tasks.

北京阿比特科技有限公司