Random quantum circuits have been utilized in the contexts of quantum supremacy demonstrations, variational quantum algorithms for chemistry and machine learning, and blackhole information. The ability of random circuits to approximate any random unitaries has consequences on their complexity, expressibility, and trainability. To study this property of random circuits, we develop numerical protocols for estimating the frame potential, the distance between a given ensemble and the exact randomness. Our tensor-network-based algorithm has polynomial complexity for shallow circuits and is high-performing using CPU and GPU parallelism. We study 1. local and parallel random circuits to verify the linear growth in complexity as stated by the Brown-Susskind conjecture, and; 2. hardware-efficient ans\"atze to shed light on its expressibility and the barren plateau problem in the context of variational algorithms. Our work shows that large-scale tensor network simulations could provide important hints toward open problems in quantum information science.
We propose a class of randomized quantum algorithms for the task of sampling from matrix functions, without the use of quantum block encodings or any other coherent oracle access to the matrix elements. As such, our use of qubits is purely algorithmic, and no additional qubits are required for quantum data structures. For $N\times N$ Hermitian matrices, the space cost is $\log(N)+1$ qubits and depending on the structure of the matrices, the gate complexity can be comparable to state-of-the-art methods that use quantum data structures of up to size $O(N^2)$, when considering equivalent end-to-end problems. Within our framework, we present a quantum linear system solver that allows one to sample properties of the solution vector, as well as an algorithm for sampling properties of ground states of Hamiltonians. As a concrete application, we combine these two sub-routines to present a scheme for calculating Green's functions of quantum many-body systems.
This paper presents a new method for quantum identity authentication (QIA) protocols. The logic of classical zero-knowledge proofs (ZKPs) due to Schnorr is applied in quantum circuits and algorithms. This novel approach gives an exact way with which a prover $P$ can prove they know some secret by encapsulating it in a quantum state before sending to a verifier $V$ by means of a quantum channel - allowing for a ZKP wherein an eavesdropper or manipulation can be detected with a fail-safe design. This is achieved by moving away from the hardness of the Discrete Logarithm Problem towards the hardness of estimating quantum states. This paper presents a method with which this can be achieved and some bounds for the security of the protocol provided. With the anticipated advent of a `quantum internet', such protocols and ideas may soon have utility and execution in the real world.
Many standard linear algebra problems can be solved on a quantum computer by using recently developed quantum linear algebra algorithms that make use of block encodings and quantum eigenvalue/singular value transformations. A block encoding embeds a properly scaled matrix of interest A in a larger unitary transformation U that can be decomposed into a product of simpler unitaries and implemented efficiently on a quantum computer. Although quantum algorithms can potentially achieve exponential speedup in solving linear algebra problems compared to the best classical algorithm, such gain in efficiency ultimately hinges on our ability to construct an efficient quantum circuit for the block encoding of A, which is difficult in general, and not trivial even for well-structured sparse matrices. In this paper, we give a few examples on how efficient quantum circuits can be explicitly constructed for some well-structured sparse matrices, and discuss a few strategies used in these constructions. We also provide implementations of these quantum circuits in MATLAB.
The problem to compute the vertices of a polytope given by affine inequalities is called vertex enumeration. The inverse problem, which is equivalent by polarity, is called the convex hull problem. We introduce `approximate vertex enumeration' as the problem to compute the vertices of a polytope which is close to the original polytope given by affine inequalities. In contrast to exact vertex enumerations, both polytopes are not required to be combinatorially equivalent. Two algorithms for this problem are introduced. The first one is an approximate variant of Motzkin's double description method. Only under certain strong conditions, which are not acceptable for practical reasons, we were able to prove correctness of this method for polytopes of arbitrary dimension. The second method, called shortcut algorithm, is based on constructing a plane graph and is restricted to polytopes of dimension 2 and 3. We prove correctness of the shortcut algorithm. As a consequence, we also obtain correctness of the approximate double description method, only for dimension 2 and 3 but without any restricting conditions as still required for higher dimensions. We show that for dimension 2 and 3 both algorithm remain correct if imprecise arithmetic is used and the computational error caused by imprecision is not too high. Both algorithms were implemented. The numerical examples motivate the approximate vertex enumeration problem by showing that the approximate problem is often easier to solve than the exact vertex enumeration problem. It remains open whether or not the approximate double description method (without any restricting condition) is correct for polytopes of dimension 4 and higher.
An emerging line of work has shown that machine-learned predictions are useful to warm-start algorithms for discrete optimization problems, such as bipartite matching. Previous studies have shown time complexity bounds proportional to some distance between a prediction and an optimal solution, which we can approximately minimize by learning predictions from past optimal solutions. However, such guarantees may not be meaningful when multiple optimal solutions exist. Indeed, the dual problem of bipartite matching and, more generally, $\text{L}$-/$\text{L}^\natural$-convex function minimization have arbitrarily many optimal solutions, making such prediction-dependent bounds arbitrarily large. To resolve this theoretically critical issue, we present a new warm-start-with-prediction framework for $\text{L}$-/$\text{L}^\natural$-convex function minimization. Our framework offers time complexity bounds proportional to the distance between a prediction and the set of all optimal solutions. The main technical difficulty lies in learning predictions that are provably close to sets of all optimal solutions, for which we present an online-gradient-descent-based method. We thus give the first polynomial-time learnability of predictions that can provably warm-start algorithms regardless of multiple optimal solutions.
Many real-world systems can be described by mathematical formulas that are human-comprehensible, easy to analyze and can be helpful in explaining the system's behaviour. Symbolic regression is a method that generates nonlinear models from data in the form of analytic expressions. Historically, symbolic regression has been predominantly realized using genetic programming, a method that iteratively evolves a population of candidate solutions that are sampled by genetic operators crossover and mutation. This gradient-free evolutionary approach suffers from several deficiencies: it does not scale well with the number of variables and samples in the training data, models tend to grow in size and complexity without an adequate accuracy gain, and it is hard to fine-tune the inner model coefficients using just genetic operators. Recently, neural networks have been applied to learn the whole analytic formula, i.e., its structure as well as the coefficients, by means of gradient-based optimization algorithms. We propose a novel neural network-based symbolic regression method that constructs physically plausible models based on limited training data and prior knowledge about the system. The method employs an adaptive weighting scheme to effectively deal with multiple loss function terms and an epoch-wise learning process to reduce the chance of getting stuck in poor local optima. Furthermore, we propose a parameter-free method for choosing the model with the best interpolation and extrapolation performance out of all models generated through the whole learning process. We experimentally evaluate the approach on the TurtleBot 2 mobile robot, the magnetic manipulation system, the equivalent resistance of two resistors in parallel, and the anti-lock braking system. The results clearly show the potential of the method to find sparse and accurate models that comply with the prior knowledge provided.
This paper presents a mobile supernumerary robotic approach to physical assistance in human-robot conjoined actions. The study starts with a description of the SUPER-MAN concept. The idea is to develop and utilize mobile collaborative systems that can follow human loco-manipulation commands to perform industrial tasks through three main components: i) an admittance-type interface, ii) a human-robot interaction controller, and iii) a supernumerary robotic body. Next, we present two possible implementations within the framework from theoretical and hardware perspectives. The first system is called MOCA-MAN and comprises a redundant torque-controlled robotic arm and an omnidirectional mobile platform. The second one is called Kairos-MAN, formed by a high-payload 6-DoF velocity-controlled robotic arm and an omnidirectional mobile platform. The systems share the same admittance interface, through which user wrenches are translated to loco-manipulation commands generated by whole-body controllers of each system. Besides, a thorough user study with multiple and cross-gender subjects is presented to reveal the quantitative performance of the two systems in effort-demanding and dexterous tasks. Moreover, we provide qualitative results from the NASA-TLX questionnaire to demonstrate the SUPER-MAN approach's potential and its acceptability from the users' viewpoint.
Copulas are now frequently used to construct or estimate multivariate distributions because of their ability to take into account the multivariate dependence of the different variables while separately specifying marginal distributions. Copula based multivariate models can often also be more parsimonious than fitting a flexible multivariate model, such as a mixture of normals model, directly to the data. However, to be effective, it is imperative that the family of copula models considered is sufficiently flexible. Although finite mixtures of copulas have been used to construct flexible families of copulas, their approximation properties are not well understood and we show that natural candidates such as mixtures of elliptical copulas and mixtures of Archimedean copulas cannot approximate a general copula arbitrarily well. Our article develops fundamental tools for approximating a general copula arbitrarily well by a copulas based on finite mixtures. We show the asymptotic properties as well as illustrate the advantages of our methodology empirically on a financial data set and on some artificial data.
Large-scale quantum information processing requires the use of quantum error correcting codes to mitigate the effects of noise in quantum devices. Topological error-correcting codes, such as surface codes, are promising candidates as they can be implemented using only local interactions in a two-dimensional array of physical qubits. Procedures such as defect braiding and lattice surgery can then be used to realize a fault-tolerant universal set of gates on the logical space of such topological codes. However, error correction also introduces a significant overhead in computation time, the number of physical qubits, and the number of physical gates. While optimizing fault-tolerant circuits to minimize this overhead is critical, the computational complexity of such optimization problems remains unknown. This ambiguity leaves room for doubt surrounding the most effective methods for compiling fault-tolerant circuits for a large-scale quantum computer. In this paper, we show that the optimization of a special subset of braided quantum circuits is NP-hard by a polynomial-time reduction of the optimization problem into a specific problem called Planar Rectilinear 3SAT.
Tensor networks, which have been traditionally used to simulate many-body physics, have recently gained significant attention in the field of machine learning due to their powerful representation capabilities. In this work, we propose a density-based clustering algorithm inspired by tensor networks. We encode classical data into tensor network states on an extended Hilbert space and train the tensor network states to capture the features of the clusters. Here, we define density and related concepts in terms of fidelity, rather than using a classical distance measure. We evaluate the performance of our algorithm on six synthetic data sets, four real world data sets, and three commonly used computer vision data sets. The results demonstrate that our method provides state-of-the-art performance on several synthetic data sets and real world data sets, even when the number of clusters is unknown. Additionally, our algorithm performs competitively with state-of-the-art algorithms on the MNIST, USPS, and Fashion-MNIST image data sets. These findings reveal the great potential of tensor networks for machine learning applications.