亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider boundary element methods where the Calder\'on projector is used for the system matrix and boundary conditions are weakly imposed using a particular variational boundary operator designed using techniques from augmented Lagrangian methods. Regardless of the boundary conditions, both the primal trace variable and the flux are approximated. We focus on the imposition of Dirichlet conditions on the Helmholtz equation, and extend the analysis of the Laplace problem from \emph{Boundary element methods with weakly imposed boundary conditions} to this case. The theory is illustrated by a series of numerical examples.

相關內容

We show that the error probability of reconstructing kernel matrices from Random Fourier Features for the Gaussian kernel function is at most $\mathcal{O}(R^{2/3} \exp(-D))$, where $D$ is the number of random features and $R$ is the diameter of the data domain. We also provide an information-theoretic method-independent lower bound of $\Omega((1-\exp(-R^2)) \exp(-D))$. Compared to prior work, we are the first to show that the error probability for random Fourier features is independent of the dimensionality of data points. As applications of our theory, we obtain dimension-independent bounds for kernel ridge regression and support vector machines.

A version of the convexification globally convergent numerical method is constructed for a coefficient inverse problem for a wave-like partial differential equation. The presence of the Carleman Weight Function in the corresponding Tikhonov-like cost functional ensures the global strict convexity of this functional. Numerical results are presented to illustrate the effectiveness and efficiency of the proposed method.

Multilevel methods are among the most efficient numerical methods for solving large-scale linear systems that arise from discretized partial differential equations. The fundamental module of such methods is a two-level procedure, which consists of compatible relaxation and coarse-level correction. Regarding two-level convergence theory, most previous works focus on the case of exact (Galerkin) coarse solver. In practice, however, it is often too costly to solve the Galerkin coarse-level system exactly when its size is relatively large. Compared with the exact case, the convergence theory of inexact two-level methods is of more practical significance, while it is still less developed in the literature, especially when nonlinear coarse solvers are used. In this paper, we establish a general framework for analyzing the convergence of inexact two-level methods, in which the coarse-level system is solved approximately by an inner iterative procedure. The framework allows us to use various (linear, nonlinear, deterministic, randomized, or hybrid) solvers in the inner iterations, as long as the corresponding accuracy estimates are available.

In this paper, we introduce a new approach based on distance fields to exactly impose boundary conditions in physics-informed deep neural networks. The challenges in satisfying Dirichlet boundary conditions in meshfree and particle methods are well-known. This issue is also pertinent in the development of physics informed neural networks (PINN) for the solution of partial differential equations. We introduce geometry-aware trial functions in artifical neural networks to improve the training in deep learning for partial differential equations. To this end, we use concepts from constructive solid geometry (R-functions) and generalized barycentric coordinates (mean value potential fields) to construct $\phi$, an approximate distance function to the boundary of a domain. To exactly impose homogeneous Dirichlet boundary conditions, the trial function is taken as $\phi$ multiplied by the PINN approximation, and its generalization via transfinite interpolation is used to a priori satisfy inhomogeneous Dirichlet (essential), Neumann (natural), and Robin boundary conditions on complex geometries. In doing so, we eliminate modeling error associated with the satisfaction of boundary conditions in a collocation method and ensure that kinematic admissibility is met pointwise in a Ritz method. We present numerical solutions for linear and nonlinear boundary-value problems over domains with affine and curved boundaries. Benchmark problems in 1D for linear elasticity, advection-diffusion, and beam bending; and in 2D for the Poisson equation, biharmonic equation, and the nonlinear Eikonal equation are considered. The approach extends to higher dimensions, and we showcase its use by solving a Poisson problem with homogeneous Dirichlet boundary conditions over the 4D hypercube. This study provides a pathway for meshfree analysis to be conducted on the exact geometry without domain discretization.

The thermal radiative transfer (TRT) equations form an integro-differential system that describes the propagation and collisional interactions of photons. Computing accurate and efficient numerical solutions TRT are challenging for several reasons, the first of which is that TRT is defined on a high-dimensional phase. In order to reduce the dimensionality of the phase space, classical approaches such as the P$_N$ (spherical harmonics) or the S$_N$ (discrete ordinates) ansatz are often used in the literature. In this work, we introduce a novel approach: the hybrid discrete (H$^T_N$) approximation to the radiative thermal transfer equations. This approach acquires desirable properties of both P$_N$ and S$_N$, and indeed reduces to each of these approximations in various limits: H$^1_N$ $\equiv$ P$_N$ and H$^T_0$ $\equiv$ S$_T$. We prove that H$^T_N$ results in a system of hyperbolic equations for all $T\ge 1$ and $N\ge 0$. Another challenge in solving the TRT system is the inherent stiffness due to the large timescale separation between propagation and collisions, especially in the diffusive (i.e., highly collisional) regime. This stiffness challenge can be partially overcome via implicit time integration, although fully implicit methods may become computationally expensive due to the strong nonlinearity and system size. On the other hand, explicit time-stepping schemes that are not also asymptotic-preserving in the highly collisional limit require resolving the mean-free path between collisions, making such schemes prohibitively expensive. In this work we develop a numerical method that is based on a nodal discontinuous Galerkin discretization in space, coupled with a semi-implicit discretization in time. We conduct several numerical experiments to verify the accuracy, efficiency, and robustness of the H$^T_N$ ansatz and the numerical discretizations.

In this paper, we revisit the $L_2$-norm error estimate for $C^0$-interior penalty analysis of Dirichlet boundary control problem governed by biharmonic operator. In this work, we have relaxed the interior angle condition of the domain from $120$ degrees to $180$ degrees, therefore this analysis can be carried out for any convex domain. The theoretical findings are illustrated by numerical experiments. Moreover, we propose a new analysis to derive the error estimates for the biharmonic equation with Cahn-Hilliard type boundary condition under minimal regularity assumption.

High-dimensional nonlinear optimization problems subject to nonlinear constraints can appear in several contexts including constrained physical and dynamical systems, statistical estimation, and other numerical models. Feasible optimization routines can sometimes be valuable if the objective function is only defined on the feasible set or if numerical difficulties associated with merit functions or infeasible termination arise during the use of infeasible optimization routines. Drawing on the Riemannian optimization and sequential quadratic programming literature, a practical algorithm is constructed to conduct feasible optimization on arbitrary implicitly defined constraint manifolds. Specifically, with $n$ (potentially bound-constrained) variables and $m < n$ nonlinear constraints, each outer optimization loop iteration involves a single $O(nm^2)$-flop factorization, and computationally efficient retractions are constructed that involve $O(nm)$-flop inner loop iterations. A package, LFPSQP.jl, is created using the Julia language that takes advantage of automatic differentiation and projected conjugate gradient methods for use in inexact/truncated Newton steps.

We investigate identifying the boundary of a domain from sample points in the domain. We introduce new estimators for the normal vector to the boundary, distance of a point to the boundary, and a test for whether a point lies within a boundary strip. The estimators can be efficiently computed and are more accurate than the ones present in the literature. We provide rigorous error estimates for the estimators. Furthermore we use the detected boundary points to solve boundary-value problems for PDE on point clouds. We prove error estimates for the Laplace and eikonal equations on point clouds. Finally we provide a range of numerical experiments illustrating the performance of our boundary estimators, applications to PDE on point clouds, and tests on image data sets.

We describe a new approach to derive numerical approximations of boundary conditions for high-order accurate finite-difference approximations. The approach, called the Local Compatibility Boundary Condition (LCBC) method, uses boundary conditions and compatibility boundary conditions derived from the governing equations, as well as interior and boundary grid values, to construct a local polynomial, whose degree matches the order of accuracy of the interior scheme, centered at each boundary point. The local polynomial is then used to derive a discrete formula for each ghost point in terms of the data. This approach leads to centered approximations that are generally more accurate and stable than one-sided approximations. Moreover, the stencil approximations are local since they do not couple to neighboring ghost-point values which can occur with traditional compatibility conditions. The local polynomial is derived using continuous operators and derivatives which enables the automatic construction of stencil approximations at different orders of accuracy. The LCBC method is developed here for problems governed by second-order partial differential equations, and it is verified for a wide range of sample problems, both time-dependent and time-independent, in two space dimensions and for schemes up to sixth-order accuracy.

In this paper, we develop a high order residual distribution (RD) method for solving steady state conservation laws in a novel Hermite weighted essentially non-oscillatory (HWENO) framework recently developed in [24]. In particular, we design a high order HWENO integration for the integrals of source term and fluxes based on the point value of the solution and its spatial derivatives, and the principles of residual distribution schemes are adapted to obtain steady state solutions. Two advantages of the novel HWENO framework have been shown in [24]: first, compared with the traditional HWENO framework, the proposed method does not need to introduce additional auxiliary equations to update the derivatives of the unknown variable, and just compute them from the current point value of the solution and its old spatial derivatives, which saves the computational storage and CPU time, and thereby improve the computational efficiency of the traditional HWENO framework. Second, compared with the traditional WENO method, reconstruction stencil of the HWENO methods becomes more compact, their boundary treatment is simpler, and the numerical errors are smaller at the same grid. Thus, it is also a compact scheme when we design the higher order accuracy, compared with that in [11] Chou and Shu proposed. Extensive numerical experiments for one- and two-dimensional scalar and systems problems confirm the high order accuracy and good quality of our scheme.

北京阿比特科技有限公司