In this paper we present and analyze a weighted residual a posteriori error estimate for an optimal control problem. The problem involves a nondifferentiable cost functional, a state equation with an integral fractional Laplacian, and control constraints. We employ subdifferentiation in the context of nondifferentiable convex analysis to obtain first-order optimality conditions. Piecewise linear polynomials are utilized to approximate the solutions of the state and adjoint equations. The control variable is discretized using the variational discretization method. Upper and lower bounds for the a posteriori error estimate of the finite element approximation of the optimal control problem are derived. In the region where 3/2 < alpha < 2, the residuals do not satisfy the L2(Omega) regularity. To address this issue, an additional weight is included in the weighted residual estimator, which is based on a power of the distance from the mesh skeleton. Furthermore, we propose an h-adaptive algorithm driven by the posterior view error estimator, utilizing the Dorfler labeling criterion. The convergence analysis results show that the approximation sequence generated by the adaptive algorithm converges at the optimal algebraic rate. Finally, numerical experiments are conducted to validate the theoretical results.
This paper endeavours to bridge the existing gap in muscular actuator design for ligament-skeletal-inspired robots, thereby fostering the evolution of these robotic systems. We introduce two novel compliant actuators, namely the Internal Torsion Spring Compliant Actuator (ICA) and the External Spring Compliant Actuator (ECA), and present a comparative analysis against the previously conceived Magnet Integrated Soft Actuator (MISA) through computational and experimental results. These actuators, employing a motor-tendon system, emulate biological muscle-like forms, enhancing artificial muscle technology. A robotic arm application inspired by the skeletal ligament system is presented. Experiments demonstrate satisfactory power in tasks like lifting dumbbells (peak power: 36W), playing table tennis (end-effector speed: 3.2 m/s), and door opening, without compromising biomimetic aesthetics. Compared to other linear stiffness serial elastic actuators (SEAs), ECA and ICA exhibit high power-to-volume (361 x 10^3 W/m) and power-to-mass (111.6 W/kg) ratios respectively, endorsing the biomimetic design's promise in robotic development.
The reverse engineering of a complex mixture, regardless of its nature, has become significant today. Being able to quickly assess the potential toxicity of new commercial products in relation to the environment presents a genuine analytical challenge. The development of digital tools (databases, chemometrics, machine learning, etc.) and analytical techniques (Raman spectroscopy, NIR spectroscopy, mass spectrometry, etc.) will allow for the identification of potential toxic molecules. In this article, we use the example of detergent products, whose composition can prove dangerous to humans or the environment, necessitating precise identification and quantification for quality control and regulation purposes. The combination of various digital tools (spectral database, mixture database, experimental design, Chemometrics / Machine Learning algorithm{\ldots}) together with different sample preparation methods (raw sample, or several concentrated / diluted samples) Raman spectroscopy, has enabled the identification of the mixture's constituents and an estimation of its composition. Implementing such strategies across different analytical tools can result in time savings for pollutant identification and contamination assessment in various matrices. This strategy is also applicable in the industrial sector for product or raw material control, as well as for quality control purposes.
Question answering methods are well-known for leveraging data bias, such as the language prior in visual question answering and the position bias in machine reading comprehension (extractive question answering). Current debiasing methods often come at the cost of significant in-distribution performance to achieve favorable out-of-distribution generalizability, while non-debiasing methods sacrifice a considerable amount of out-of-distribution performance in order to obtain high in-distribution performance. Therefore, it is challenging for them to deal with the complicated changing real-world situations. In this paper, we propose a simple yet effective novel loss function with adaptive loose optimization, which seeks to make the best of both worlds for question answering. Our main technical contribution is to reduce the loss adaptively according to the ratio between the previous and current optimization state on mini-batch training data. This loose optimization can be used to prevent non-debiasing methods from overlearning data bias while enabling debiasing methods to maintain slight bias learning. Experiments on the visual question answering datasets, including VQA v2, VQA-CP v1, VQA-CP v2, GQA-OOD, and the extractive question answering dataset SQuAD demonstrate that our approach enables QA methods to obtain state-of-the-art in- and out-of-distribution performance in most cases. The source code has been released publicly in \url{//github.com/reml-group/ALO}.
An important yet underexplored question in the PAC-Bayes literature is how much tightness we lose by restricting the posterior family to factorized Gaussian distributions when optimizing a PAC-Bayes bound. We investigate this issue by estimating data-independent PAC-Bayes bounds using the optimal posteriors, comparing them to bounds obtained using MFVI. Concretely, we (1) sample from the optimal Gibbs posterior using Hamiltonian Monte Carlo, (2) estimate its KL divergence from the prior with thermodynamic integration, and (3) propose three methods to obtain high-probability bounds under different assumptions. Our experiments on the MNIST dataset reveal significant tightness gaps, as much as 5-6\% in some cases.
In this paper, we propose a novel bipartite entanglement purification protocol built upon hashing and upon the guessing random additive noise decoding (GRAND) approach recently devised for classical error correction codes. Our protocol offers substantial advantages over existing hashing protocols, requiring fewer qubits for purification, achieving higher fidelities, and delivering better yields with reduced computational costs. We provide numerical and semi-analytical results to corroborate our findings and provide a detailed comparison with the hashing protocol of Bennet et al. Although that pioneering work devised performance bounds, it did not offer an explicit construction for implementation. The present work fills that gap, offering both an explicit and more efficient purification method. We demonstrate that our protocol is capable of purifying states with noise on the order of 10% per Bell pair even with a small ensemble of 16 pairs. The work explores a measurement-based implementation of the protocol to address practical setups with noise. This work opens the path to practical and efficient entanglement purification using hashing-based methods with feasible computational costs. Compared to the original hashing protocol, the proposed method can achieve some desired fidelity with a number of initial resources up to one hundred times smaller. Therefore, the proposed method seems well-fit for future quantum networks with a limited number of resources and entails a relatively low computational overhead.
In this paper, we derive a kinetic description of swarming particle dynamics in an interacting multi-agent system featuring emerging leaders and followers. Agents are classically characterized by their position and velocity plus a continuous parameter quantifying their degree of leadership. The microscopic processes ruling the change of velocity and degree of leadership are independent, non-conservative and non-local in the physical space, so as to account for long-range interactions. Out of the kinetic description, we obtain then a macroscopic model under a hydrodynamic limit reminiscent of that used to tackle the hydrodynamics of weakly dissipative granular gases, thus relying in particular on a regime of small non-conservative and short-range interactions. Numerical simulations in one- and two-dimensional domains show that the limiting macroscopic model is consistent with the original particle dynamics and furthermore can reproduce classical emerging patterns typically observed in swarms.
Accurately estimating the positions of multi-agent systems in indoor environments is challenging due to the lack of Global Navigation Satelite System (GNSS) signals. Noisy measurements of position and orientation can cause the integrated position estimate to drift without bound. Previous research has proposed using magnetic field simultaneous localization and mapping (SLAM) to compensate for position drift in a single agent. Here, we propose two novel algorithms that allow multiple agents to apply magnetic field SLAM using their own and other agents measurements. Our first algorithm is a centralized approach that uses all measurements collected by all agents in a single extended Kalman filter. This algorithm simultaneously estimates the agents position and orientation and the magnetic field norm in a central unit that can communicate with all agents at all times. In cases where a central unit is not available, and there are communication drop-outs between agents, our second algorithm is a distributed approach that can be employed. We tested both algorithms by estimating the position of magnetometers carried by three people in an optical motion capture lab with simulated odometry and simulated communication dropouts between agents. We show that both algorithms are able to compensate for drift in a case where single-agent SLAM is not. We also discuss the conditions for the estimate from our distributed algorithm to converge to the estimate from the centralized algorithm, both theoretically and experimentally. Our experiments show that, for a communication drop-out rate of 80 percent, our proposed distributed algorithm, on average, provides a more accurate position estimate than single-agent SLAM. Finally, we demonstrate the drift-compensating abilities of our centralized algorithm on a real-life pedestrian localization problem with multiple agents moving inside a building.
The paper is briefly dealing with greater or lesser misused normalization in self-modeling/multivariate curve resolution (S/MCR) practice. The importance of the correct use of the ode solvers and apt kinetic illustrations are elucidated. The new terms, external and internal normalizations are defined and interpreted. The problem of reducibility of a matrix is touched. Improper generalization/development of normalization-based methods are cited as examples. The position of the extreme values of the signal contribution function is clarified. An Executable Notebook with Matlab Live Editor was created for algorithmic explanations and depictions.
In this paper we consider the finite element approximation of Maxwell's problem and analyse the prescription of essential boundary conditions in a weak sense using Nitsche's method. To avoid indefiniteness of the problem, the original equations are augmented with the gradient of a scalar field that allows one to impose the zero divergence of the magnetic induction, even if the exact solution for this scalar field is zero. Two finite element approximations are considered, namely, one in which the approximation spaces are assumed to satisfy the appropriate inf-sup condition that render the standard Galerkin method stable, and another augmented and stabilised one that permits the use of finite element interpolations of arbitrary order. Stability and convergence results are provided for the two finite element formulations considered.
This paper describes two intelligibility prediction systems derived from a pretrained noise-robust automatic speech recognition (ASR) model for the second Clarity Prediction Challenge (CPC2). One system is intrusive and leverages the hidden representations of the ASR model. The other system is non-intrusive and makes predictions with derived ASR uncertainty. The ASR model is only pretrained with a simulated noisy speech corpus and does not take advantage of the CPC2 data. For that reason, the intelligibility prediction systems are robust to unseen scenarios given the accurate prediction performance on the CPC2 evaluation.