Integrated information theory (IIT) is a theoretical framework that provides a quantitative measure to estimate when a physical system is conscious, its degree of consciousness, and the complexity of the qualia space that the system is experiencing. Formally, IIT rests on the assumption that if a surrogate physical system can fully embed the phenomenological properties of consciousness, then the system properties must be constrained by the properties of the qualia being experienced. Following this assumption, IIT represents the physical system as a network of interconnected elements that can be thought of as a probabilistic causal graph, $\mathcal{G}$, where each node has an input-output function and all the graph is encoded in a transition probability matrix. Consequently, IIT's quantitative measure of consciousness, $\Phi$, is computed with respect to the transition probability matrix and the present state of the graph. In this paper, we provide a random search algorithm that is able to optimize $\Phi$ in order to investigate, as the number of nodes increases, the structure of the graphs that have higher $\Phi$. We also provide arguments that show the difficulties of applying more complex black-box search algorithms, such as Bayesian optimization or metaheuristics, in this particular problem. Additionally, we suggest specific research lines for these techniques to enhance the search algorithm that guarantees maximal $\Phi$.
In this paper, we study error bounds for {\em Bayesian quadrature} (BQ), with an emphasis on noisy settings, randomized algorithms, and average-case performance measures. We seek to approximate the integral of functions in a {\em Reproducing Kernel Hilbert Space} (RKHS), particularly focusing on the Mat\'ern-$\nu$ and squared exponential (SE) kernels, with samples from the function potentially being corrupted by Gaussian noise. We provide a two-step meta-algorithm that serves as a general tool for relating the average-case quadrature error with the $L^2$-function approximation error. When specialized to the Mat\'ern kernel, we recover an existing near-optimal error rate while avoiding the existing method of repeatedly sampling points. When specialized to other settings, we obtain new average-case results for settings including the SE kernel with noise and the Mat\'ern kernel with misspecification. Finally, we present algorithm-independent lower bounds that have greater generality and/or give distinct proofs compared to existing ones.
Recent work on deep clustering has found new promising methods also for constrained clustering problems. Their typically pairwise constraints often can be used to guide the partitioning of the data. Many problems however, feature cluster-level constraints, e.g. the Capacitated Clustering Problem (CCP), where each point has a weight and the total weight sum of all points in each cluster is bounded by a prescribed capacity. In this paper we propose a new method for the CCP, Neural Capacited Clustering, that learns a neural network to predict the assignment probabilities of points to cluster centers from a data set of optimal or near optimal past solutions of other problem instances. During inference, the resulting scores are then used in an iterative k-means like procedure to refine the assignment under capacity constraints. In our experiments on artificial data and two real world datasets our approach outperforms several state-of-the-art mathematical and heuristic solvers from the literature. Moreover, we apply our method in the context of a cluster-first-route-second approach to the Capacitated Vehicle Routing Problem (CVRP) and show competitive results on the well-known Uchoa benchmark.
Motivated by a real-world application, we model and solve a complex staff scheduling problem. Tasks are to be assigned to workers for supervision. Multiple tasks can be covered in parallel by a single worker, with worker shifts being flexible within availabilities. Each worker has a different skill set, enabling them to cover different tasks. Tasks require assignment according to priority and skill requirements. The objective is to maximize the number of assigned tasks weighted by their priorities, while minimizing assignment penalties. We develop an adaptive large neighborhood search (ALNS) algorithm, relying on tailored destroy and repair operators. It is tested on benchmark instances derived from real-world data and compared to optimal results obtained by means of a commercial MIP-solver. Furthermore, we analyze the impact of considering three additional alternative objective functions. When applied to large-scale company data, the developed ALNS outperforms the previously applied solution approach.
We develop new tools in the theory of nonlinear random matrices and apply them to study the performance of the Sum of Squares (SoS) hierarchy on average-case problems. The SoS hierarchy is a powerful optimization technique that has achieved tremendous success for various problems in combinatorial optimization, robust statistics and machine learning. It's a family of convex relaxations that lets us smoothly trade off running time for approximation guarantees. In recent works, it's been shown to be extremely useful for recovering structure in high dimensional noisy data. It also remains our best approach towards refuting the notorious Unique Games Conjecture. In this work, we analyze the performance of the SoS hierarchy on fundamental problems stemming from statistics, theoretical computer science and statistical physics. In particular, we show subexponential-time SoS lower bounds for the problems of the Sherrington-Kirkpatrick Hamiltonian, Planted Slightly Denser Subgraph, Tensor Principal Components Analysis and Sparse Principal Components Analysis. These SoS lower bounds involve analyzing large random matrices, wherein lie our main contributions. These results offer strong evidence for the truth of and insight into the low-degree likelihood ratio hypothesis, an important conjecture that predicts the power of bounded-time algorithms for hypothesis testing. We also develop general-purpose tools for analyzing the behavior of random matrices which are functions of independent random variables. Towards this, we build on and generalize the matrix variant of the Efron-Stein inequalities. In particular, our general theorem on matrix concentration recovers various results that have appeared in the literature. We expect these random matrix theory ideas to have other significant applications.
We consider the problem of learning the dynamics of a linear system when one has access to data generated by an auxiliary system that shares similar (but not identical) dynamics, in addition to data from the true system. We use a weighted least squares approach, and provide a finite sample error bound of the learned model as a function of the number of samples and various system parameters from the two systems as well as the weight assigned to the auxiliary data. We show that the auxiliary data can help to reduce the intrinsic system identification error due to noise, at the price of adding a portion of error that is due to the differences between the two system models. We further provide a data-dependent bound that is computable when some prior knowledge about the systems is available. This bound can also be used to determine the weight that should be assigned to the auxiliary data during the model training stage.
Choiceless Polynomial Time (CPT) is one of the few remaining candidate logics for capturing PTIME. In this paper, we make progress towards separating CPT from polynomial time by firstly establishing a connection between the expressive power of CPT and the existence of certain symmetric circuit families, and secondly, proving lower bounds against these circuits. We focus on the isomorphism problem of unordered Cai-F\"urer-Immerman-graphs (the CFI-query) as a potential candidate for separating CPT from P. Results by Dawar, Richerby and Rossman, and subsequently by Pakusa, Schalth\"ofer and Selman show that the CFI-query is CPT-definable on linearly ordered and preordered base graphs with small colour classes. We define a class of CPT-algorithms, that we call "CFI-symmetric algorithms", which generalises all the known ones, and show that such algorithms can only define the CFI-query on a given class of base graphs if there exists a family of symmetric XOR-circuits with certain properties. These properties include that the circuits have the same symmetries as the base graphs, are of polynomial size, and satisfy certain fan-in restrictions. Then we prove that such circuits with slightly strengthened requirements (i.e. stronger symmetry and fan-in and fan-out restrictions) do not exist for the n-dimensional hypercubes as base graphs. This almost separates the CFI-symmetric algorithms from polynomial time - up to the gap that remains between the circuits whose existence we can currently disprove and the circuits whose existence is necessary for the definability of the CFI-query by a CFI-symmetric algorithm.
Learning causal relationships between variables is a fundamental task in causal inference and directed acyclic graphs (DAGs) are a popular choice to represent the causal relationships. As one can recover a causal graph only up to its Markov equivalence class from observations, interventions are often used for the recovery task. Interventions are costly in general and it is important to design algorithms that minimize the number of interventions performed. In this work, we study the problem of identifying the smallest set of interventions required to learn the causal relationships between a subset of edges (target edges). Under the assumptions of faithfulness, causal sufficiency, and ideal interventions, we study this problem in two settings: when the underlying ground truth causal graph is known (subset verification) and when it is unknown (subset search). For the subset verification problem, we provide an efficient algorithm to compute a minimum sized interventional set; we further extend these results to bounded size non-atomic interventions and node-dependent interventional costs. For the subset search problem, in the worst case, we show that no algorithm (even with adaptivity or randomization) can achieve an approximation ratio that is asymptotically better than the vertex cover of the target edges when compared with the subset verification number. This result is surprising as there exists a logarithmic approximation algorithm for the search problem when we wish to recover the whole causal graph. To obtain our results, we prove several interesting structural properties of interventional causal graphs that we believe have applications beyond the subset verification/search problems studied here.
Goal-conditioned reinforcement learning (GCRL) refers to learning general-purpose skills which aim to reach diverse goals. In particular, offline GCRL only requires purely pre-collected datasets to perform training tasks without additional interactions with the environment. Although offline GCRL has become increasingly prevalent and many previous works have demonstrated its empirical success, the theoretical understanding of efficient offline GCRL algorithms is not well established, especially when the state space is huge and the offline dataset only covers the policy we aim to learn. In this paper, we propose a novel provably efficient algorithm (the sample complexity is $\tilde{O}({\rm poly}(1/\epsilon))$ where $\epsilon$ is the desired suboptimality of the learned policy) with general function approximation. Our algorithm only requires nearly minimal assumptions of the dataset (single-policy concentrability) and the function class (realizability). Moreover, our algorithm consists of two uninterleaved optimization steps, which we refer to as $V$-learning and policy learning, and is computationally stable since it does not involve minimax optimization. To the best of our knowledge, this is the first algorithm with general function approximation and single-policy concentrability that is both statistically efficient and computationally stable.
Selecting period values for tasks is a very important step in the design process of a real-time system, especially due to the significance of its impact on system schedulability. It is well known that, under RMS, the utilization bound for a harmonic task set is 100%. Also, polynomial-time algorithms have been developed for response-time analysis of harmonic task sets. In practice, the largest acceptable value for the period of a task is determined by the performance and safety requirements of the application. In this paper, we address the problem of assigning harmonic periods to a task set such that every task gets assigned an integer period less than or equal to its application specified upper bound and the task utilization of every task is less than 1. We focus on integer solutions given the discrete nature of time in real-time computer systems. We first express this problem of assigning harmonic periods to a task set as a discrete piecewise optimization problem. We then present the 'Discrete Piecewise Harmonic Search' (DPHS) algorithm that outputs an optimal harmonic task assignment. We then define conditions for a metric to be rational for harmonization. We show that commonly used metrics like, the total percentage error (TPE), total system utilization (TSU), first order error (FOE), and maximum percentage error (MPE), are rational. We next prove that the DPHS algorithm finds the optimal feasible assignment, if one exists, for these rational metrics. We apply the DPHS algorithm to harmonize task sets used in real-world applications to highlight its benefits. We compare the performance of the DPHS algorithm against a brute-force search and find that the DPHS searches up to 94\% fewer task sets than the brute-force search that obtains the optimal solution.
In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.