亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper we introduce a new approach to discrete-time semi-Markov decision processes based on the sojourn time process. Different characterizations of discrete-time semi-Markov processes are exploited and decision processes are constructed by their means. With this new approach, the agent is allowed to consider different actions depending also on the sojourn time of the process in the current state. A numerical method based on $Q$-learning algorithms for finite horizon reinforcement learning and stochastic recursive relations is investigated. Finally, we consider two toy examples: one in which the reward depends on the sojourn-time, according to the gambler's fallacy; the other in which the environment is semi-Markov even if the reward function does not depend on the sojourn time. These are used to carry on some numerical evaluations on the previously presented $Q$-learning algorithm and on a different naive method based on deep reinforcement learning.

相關內容

 Processing 是一門開源編程語言和與之配套的集成開發環境(IDE)的名稱。Processing 在電子藝術和視覺設計社區被用來教授編程基礎,并運用于大量的新媒體和互動藝術作品中。

Multi-agent deep reinforcement learning has been applied to address a variety of complex problems with either discrete or continuous action spaces and achieved great success. However, most real-world environments cannot be described by only discrete action spaces or only continuous action spaces. And there are few works having ever utilized deep reinforcement learning (drl) to multi-agent problems with hybrid action spaces. Therefore, we propose a novel algorithm: Deep Multi-Agent Hybrid Soft Actor-Critic (MAHSAC) to fill this gap. This algorithm follows the centralized training but decentralized execution (CTDE) paradigm, and extend the Soft Actor-Critic algorithm (SAC) to handle hybrid action space problems in Multi-Agent environments based on maximum entropy. Our experiences are running on an easy multi-agent particle world with a continuous observation and discrete action space, along with some basic simulated physics. The experimental results show that MAHSAC has good performance in training speed, stability, and anti-interference ability. At the same time, it outperforms existing independent deep hybrid learning method in cooperative scenarios and competitive scenarios.

Information-directed sampling (IDS) has revealed its potential as a data-efficient algorithm for reinforcement learning (RL). However, theoretical understanding of IDS for Markov Decision Processes (MDPs) is still limited. We develop novel information-theoretic tools to bound the information ratio and cumulative information gain about the learning target. Our theoretical results shed light on the importance of choosing the learning target such that the practitioners can balance the computation and regret bounds. As a consequence, we derive prior-free Bayesian regret bounds for vanilla-IDS which learns the whole environment under tabular finite-horizon MDPs. In addition, we propose a computationally-efficient regularized-IDS that maximizes an additive form rather than the ratio form and show that it enjoys the same regret bound as vanilla-IDS. With the aid of rate-distortion theory, we improve the regret bound by learning a surrogate, less informative environment. Furthermore, we extend our analysis to linear MDPs and prove similar regret bounds for Thompson sampling as a by-product.

The generalization of model-based reinforcement learning (MBRL) methods to environments with unseen transition dynamics is an important yet challenging problem. Existing methods try to extract environment-specified information $Z$ from past transition segments to make the dynamics prediction model generalizable to different dynamics. However, because environments are not labelled, the extracted information inevitably contains redundant information unrelated to the dynamics in transition segments and thus fails to maintain a crucial property of $Z$: $Z$ should be similar in the same environment and dissimilar in different ones. As a result, the learned dynamics prediction function will deviate from the true one, which undermines the generalization ability. To tackle this problem, we introduce an interventional prediction module to estimate the probability of two estimated $\hat{z}_i, \hat{z}_j$ belonging to the same environment. Furthermore, by utilizing the $Z$'s invariance within a single environment, a relational head is proposed to enforce the similarity between $\hat{{Z}}$ from the same environment. As a result, the redundant information will be reduced in $\hat{Z}$. We empirically show that $\hat{{Z}}$ estimated by our method enjoy less redundant information than previous methods, and such $\hat{{Z}}$ can significantly reduce dynamics prediction errors and improve the performance of model-based RL methods on zero-shot new environments with unseen dynamics. The codes of this method are available at \url{//github.com/CR-Gjx/RIA}.

Though deep reinforcement learning (DRL) has obtained substantial success, it may encounter catastrophic failures due to the intrinsic uncertainty of both transition and observation. Most of the existing methods for safe reinforcement learning can only handle transition disturbance or observation disturbance since these two kinds of disturbance affect different parts of the agent; besides, the popular worst-case return may lead to overly pessimistic policies. To address these issues, we first theoretically prove that the performance degradation under transition disturbance and observation disturbance depends on a novel metric of Value Function Range (VFR), which corresponds to the gap in the value function between the best state and the worst state. Based on the analysis, we adopt conditional value-at-risk (CVaR) as an assessment of risk and propose a novel reinforcement learning algorithm of CVaR-Proximal-Policy-Optimization (CPPO) which formalizes the risk-sensitive constrained optimization problem by keeping its CVaR under a given threshold. Experimental results show that CPPO achieves a higher cumulative reward and is more robust against both observation and transition disturbances on a series of continuous control tasks in MuJoCo.

Motivated by the recent empirical success of policy-based reinforcement learning (RL), there has been a research trend studying the performance of policy-based RL methods on standard control benchmark problems. In this paper, we examine the effectiveness of policy-based RL methods on an important robust control problem, namely $\mu$ synthesis. We build a connection between robust adversarial RL and $\mu$ synthesis, and develop a model-free version of the well-known $DK$-iteration for solving state-feedback $\mu$ synthesis with static $D$-scaling. In the proposed algorithm, the $K$ step mimics the classical central path algorithm via incorporating a recently-developed double-loop adversarial RL method as a subroutine, and the $D$ step is based on model-free finite difference approximation. Extensive numerical study is also presented to demonstrate the utility of our proposed model-free algorithm. Our study sheds new light on the connections between adversarial RL and robust control.

Model-based offline optimization with dynamics-aware policy provides a new perspective for policy learning and out-of-distribution generalization, where the learned policy could adapt to different dynamics enumerated at the training stage. But due to the limitation under the offline setting, the learned model could not mimic real dynamics well enough to support reliable out-of-distribution exploration, which still hinders policy to generalize well. To narrow the gap, previous works roughly ensemble randomly initialized models to better approximate the real dynamics. However, such practice is costly and inefficient, and provides no guarantee on how well the real dynamics could be approximated by the learned models, which we name coverability in this paper. We actively address this issue by generating models with provable ability to cover real dynamics in an efficient and controllable way. To that end, we design a distance metric for dynamic models based on the occupancy of policies under the dynamics, and propose an algorithm to generate models optimizing their coverage for the real dynamics. We give a theoretical analysis on the model generation process and proves that our algorithm could provide enhanced coverability. As a downstream task, we train a dynamics-aware policy with minor or no conservative penalty, and experiments demonstrate that our algorithm outperforms prior offline methods on existing offline RL benchmarks. We also discover that policies learned by our method have better zero-shot transfer performance, implying their better generalization.

Recommender systems (RSs) have become an inseparable part of our everyday lives. They help us find our favorite items to purchase, our friends on social networks, and our favorite movies to watch. Traditionally, the recommendation problem was considered to be a classification or prediction problem, but it is now widely agreed that formulating it as a sequential decision problem can better reflect the user-system interaction. Therefore, it can be formulated as a Markov decision process (MDP) and be solved by reinforcement learning (RL) algorithms. Unlike traditional recommendation methods, including collaborative filtering and content-based filtering, RL is able to handle the sequential, dynamic user-system interaction and to take into account the long-term user engagement. Although the idea of using RL for recommendation is not new and has been around for about two decades, it was not very practical, mainly because of scalability problems of traditional RL algorithms. However, a new trend has emerged in the field since the introduction of deep reinforcement learning (DRL), which made it possible to apply RL to the recommendation problem with large state and action spaces. In this paper, a survey on reinforcement learning based recommender systems (RLRSs) is presented. Our aim is to present an outlook on the field and to provide the reader with a fairly complete knowledge of key concepts of the field. We first recognize and illustrate that RLRSs can be generally classified into RL- and DRL-based methods. Then, we propose an RLRS framework with four components, i.e., state representation, policy optimization, reward formulation, and environment building, and survey RLRS algorithms accordingly. We highlight emerging topics and depict important trends using various graphs and tables. Finally, we discuss important aspects and challenges that can be addressed in the future.

This paper focuses on improving the resource allocation algorithm in terms of packet delivery ratio (PDR), i.e., the number of successfully received packets sent by end devices (EDs) in a long-range wide-area network (LoRaWAN). Setting the transmission parameters significantly affects the PDR. Employing reinforcement learning (RL), we propose a resource allocation algorithm that enables the EDs to configure their transmission parameters in a distributed manner. We model the resource allocation problem as a multi-armed bandit (MAB) and then address it by proposing a two-phase algorithm named MIX-MAB, which consists of the exponential weights for exploration and exploitation (EXP3) and successive elimination (SE) algorithms. We evaluate the MIX-MAB performance through simulation results and compare it with other existing approaches. Numerical results show that the proposed solution performs better than the existing schemes in terms of convergence time and PDR.

Offline reinforcement learning (RL) enables effective learning from previously collected data without exploration, which shows great promise in real-world applications when exploration is expensive or even infeasible. The discount factor, $\gamma$, plays a vital role in improving online RL sample efficiency and estimation accuracy, but the role of the discount factor in offline RL is not well explored. This paper examines two distinct effects of $\gamma$ in offline RL with theoretical analysis, namely the regularization effect and the pessimism effect. On the one hand, $\gamma$ is a regulator to trade-off optimality with sample efficiency upon existing offline techniques. On the other hand, lower guidance $\gamma$ can also be seen as a way of pessimism where we optimize the policy's performance in the worst possible models. We empirically verify the above theoretical observation with tabular MDPs and standard D4RL tasks. The results show that the discount factor plays an essential role in the performance of offline RL algorithms, both under small data regimes upon existing offline methods and in large data regimes without other conservatisms.

We study the problem of learning to reason in large scale knowledge graphs (KGs). More specifically, we describe a novel reinforcement learning framework for learning multi-hop relational paths: we use a policy-based agent with continuous states based on knowledge graph embeddings, which reasons in a KG vector space by sampling the most promising relation to extend its path. In contrast to prior work, our approach includes a reward function that takes the accuracy, diversity, and efficiency into consideration. Experimentally, we show that our proposed method outperforms a path-ranking based algorithm and knowledge graph embedding methods on Freebase and Never-Ending Language Learning datasets.

北京阿比特科技有限公司