The concept of varentropy has been recently introduced as a dispersion index of the reliability of measure of information. In this paper, we introduce new measures of variability for two measures of uncertainty, the Kerridge inaccuracy measure and the Kullback-Leibler divergence. These new definitions and related properties, bounds and examples are presented. Finally we show an application of Kullback-Leibler divergence and its dispersion index using the mean-variance rule.
Ensemble methods based on subsampling, such as random forests, are popular in applications due to their high predictive accuracy. Existing literature views a random forest prediction as an infinite-order incomplete U-statistic to quantify its uncertainty. However, these methods focus on a small subsampling size of each tree, which is theoretically valid but practically limited. This paper develops an unbiased variance estimator based on incomplete U-statistics, which allows the tree size to be comparable with the overall sample size, making statistical inference possible in a broader range of real applications. Simulation results demonstrate that our estimators enjoy lower bias and more accurate confidence interval coverage without additional computational costs. We also propose a local smoothing procedure to reduce the variation of our estimator, which shows improved numerical performance when the number of trees is relatively small. Further, we investigate the ratio consistency of our proposed variance estimator under specific scenarios. In particular, we develop a new "double U-statistic" formulation to analyze the Hoeffding decomposition of the estimator's variance.
We introduce a divergence measure between data distributions based on operators in reproducing kernel Hilbert spaces defined by kernels. The empirical estimator of the divergence is computed using the eigenvalues of positive definite Gram matrices that are obtained by evaluating the kernel over pairs of data points. The new measure shares similar properties to Jensen-Shannon divergence. Convergence of the proposed estimators follows from concentration results based on the difference between the ordered spectrum of the Gram matrices and the integral operators associated with the population quantities. The proposed measure of divergence avoids the estimation of the probability distribution underlying the data. Numerical experiments involving comparing distributions and applications to sampling unbalanced data for classification show that the proposed divergence can achieve state of the art results.
We introduce a new family of techniques to post-process ("wrap") a black-box classifier in order to reduce its bias. Our technique builds on the recent analysis of improper loss functions whose optimisation can correct any twist in prediction, unfairness being treated as a twist. In the post-processing, we learn a wrapper function which we define as an {\alpha}-tree, which modifies the prediction. We provide two generic boosting algorithms to learn {\alpha}-trees. We show that our modification has appealing properties in terms of composition of{\alpha}-trees, generalization, interpretability, and KL divergence between modified and original predictions. We exemplify the use of our technique in three fairness notions: conditional value at risk, equality of opportunity, and statistical parity; and provide experiments on several readily available datasets.
With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.
We reinterpreting the variational inference in a new perspective. Via this way, we can easily prove that EM algorithm, VAE, GAN, AAE, ALI(BiGAN) are all special cases of variational inference. The proof also reveals the loss of standard GAN is incomplete and it explains why we need to train GAN cautiously. From that, we find out a regularization term to improve stability of GAN training.
Machine Learning is a widely-used method for prediction generation. These predictions are more accurate when the model is trained on a larger dataset. On the other hand, the data is usually divided amongst different entities. For privacy reasons, the training can be done locally and then the model can be safely aggregated amongst the participants. However, if there are only two participants in \textit{Collaborative Learning}, the safe aggregation loses its power since the output of the training already contains much information about the participants. To resolve this issue, they must employ privacy-preserving mechanisms, which inevitably affect the accuracy of the model. In this paper, we model the training process as a two-player game where each player aims to achieve a higher accuracy while preserving its privacy. We introduce the notion of \textit{Price of Privacy}, a novel approach to measure the effect of privacy protection on the accuracy of the model. We develop a theoretical model for different player types, and we either find or prove the existence of a Nash Equilibrium with some assumptions. Moreover, we confirm these assumptions via a Recommendation Systems use case: for a specific learning algorithm, we apply three privacy-preserving mechanisms on two real-world datasets. Finally, as a complementary work for the designed game, we interpolate the relationship between privacy and accuracy for this use case and present three other methods to approximate it in a real-world scenario.
Methods that align distributions by minimizing an adversarial distance between them have recently achieved impressive results. However, these approaches are difficult to optimize with gradient descent and they often do not converge well without careful hyperparameter tuning and proper initialization. We investigate whether turning the adversarial min-max problem into an optimization problem by replacing the maximization part with its dual improves the quality of the resulting alignment and explore its connections to Maximum Mean Discrepancy. Our empirical results suggest that using the dual formulation for the restricted family of linear discriminators results in a more stable convergence to a desirable solution when compared with the performance of a primal min-max GAN-like objective and an MMD objective under the same restrictions. We test our hypothesis on the problem of aligning two synthetic point clouds on a plane and on a real-image domain adaptation problem on digits. In both cases, the dual formulation yields an iterative procedure that gives more stable and monotonic improvement over time.
Amortized inference has led to efficient approximate inference for large datasets. The quality of posterior inference is largely determined by two factors: a) the ability of the variational distribution to model the true posterior and b) the capacity of the recognition network to generalize inference over all datapoints. We analyze approximate inference in variational autoencoders in terms of these factors. We find that suboptimal inference is often due to amortizing inference rather than the limited complexity of the approximating distribution. We show that this is due partly to the generator learning to accommodate the choice of approximation. Furthermore, we show that the parameters used to increase the expressiveness of the approximation play a role in generalizing inference rather than simply improving the complexity of the approximation.
In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.
We present two deep generative models based on Variational Autoencoders to improve the accuracy of drug response prediction. Our models, Perturbation Variational Autoencoder and its semi-supervised extension, Drug Response Variational Autoencoder (Dr.VAE), learn latent representation of the underlying gene states before and after drug application that depend on: (i) drug-induced biological change of each gene and (ii) overall treatment response outcome. Our VAE-based models outperform the current published benchmarks in the field by anywhere from 3 to 11% AUROC and 2 to 30% AUPR. In addition, we found that better reconstruction accuracy does not necessarily lead to improvement in classification accuracy and that jointly trained models perform better than models that minimize reconstruction error independently.