Classical algorithms for market equilibrium computation such as proportional response dynamics face scalability issues with Internet-based applications such as auctions, recommender systems, and fair division, despite having an almost linear runtime in terms of the product of buyers and goods. In this work, we provide the first quantum algorithm for market equilibrium computation with sub-linear performance. Our algorithm provides a polynomial runtime speedup in terms of the product of the number of buyers and goods while reaching the same optimization objective value as the classical algorithm. Numerical simulations of a system with 16384 buyers and goods support our theoretical results that our quantum algorithm provides a significant speedup.
We present a novel, model-free, and data-driven methodology for controlling complex dynamical systems into previously unseen target states, including those with significantly different and complex dynamics. Leveraging a parameter-aware realization of next-generation reservoir computing, our approach accurately predicts system behavior in unobserved parameter regimes, enabling control over transitions to arbitrary target states. Crucially, this includes states with dynamics that differ fundamentally from known regimes, such as shifts from periodic to intermittent or chaotic behavior. The method's parameter-awareness facilitates non-stationary control, ensuring smooth transitions between states. By extending the applicability of machine learning-based control mechanisms to previously inaccessible target dynamics, this methodology opens the door to transformative new applications while maintaining exceptional efficiency. Our results highlight reservoir computing as a powerful alternative to traditional methods for dynamic system control.
Studying unified model averaging estimation for situations with complicated data structures, we propose a novel model averaging method based on cross-validation (MACV). MACV unifies a large class of new and existing model averaging estimators and covers a very general class of loss functions. Furthermore, to reduce the computational burden caused by the conventional leave-subject/one-out cross validation, we propose a SEcond-order-Approximated Leave-one/subject-out (SEAL) cross validation, which largely improves the computation efficiency. In the context of non-independent and non-identically distributed random variables, we establish the unified theory for analyzing the asymptotic behaviors of the proposed MACV and SEAL methods, where the number of candidate models is allowed to diverge with sample size. To demonstrate the breadth of the proposed methodology, we exemplify four optimal model averaging estimators under four important situations, i.e., longitudinal data with discrete responses, within-cluster correlation structure modeling, conditional prediction in spatial data, and quantile regression with a potential correlation structure. We conduct extensive simulation studies and analyze real-data examples to illustrate the advantages of the proposed methods.
Parameter inference is essential when interpreting observational data using mathematical models. Standard inference methods for differential equation models typically rely on obtaining repeated numerical solutions of the differential equation(s). Recent results have explored how numerical truncation error can have major, detrimental, and sometimes hidden impacts on likelihood-based inference by introducing false local maxima into the log-likelihood function. We present a straightforward approach for inference that eliminates the need for solving the underlying differential equations, thereby completely avoiding the impact of truncation error. Open-access Jupyter notebooks, available on GitHub, allow others to implement this method for a broad class of widely-used models to interpret biological data.
We present a rigorous convergence analysis of a new method for density-based topology optimization: Sigmoidal Mirror descent with a Projected Latent variable. SiMPL, pronounced like "simple," provides point-wise bound preserving design updates and faster convergence than other popular first-order topology optimization methods. Due to its strong bound preservation, the method is exceptionally robust, as demonstrated in numerous examples here and in the companion article. Furthermore, it is easy to implement with clear structure and analytical expressions for the updates. Our analysis covers two versions of the method, characterized by the employed line search strategies. We consider a modified Armijo backtracking line search and a Bregman backtracking line search. For both line search algorithms, SiMPL delivers a strict monotone decrease in the objective function and further intuitive convergence properties, e.g., strong and pointwise convergence of the density variables on the active sets, norm convergence to zero of the increments, convergence of the Lagrange multipliers, and more. In addition, the numerical experiments demonstrate apparent mesh-independent convergence of the algorithm.
We consider the problem of causal inference based on observational data (or the related missing data problem) with a binary or discrete treatment variable. In that context, we study inference for the counterfactual density functions and contrasts thereof, which can provide more nuanced information than counterfactual means and the average treatment effect. We impose the shape-constraint of log-concavity, a type of unimodality constraint, on the counterfactual densities, and then develop doubly robust estimators of the log-concave counterfactual density based on augmented inverse-probability weighted pseudo-outcomes. We provide conditions under which the estimator is consistent in various global metrics. We also develop asymptotically valid pointwise confidence intervals for the counterfactual density functions and differences and ratios thereof, which serve as a building block for more comprehensive analyses of distributional differences. We also present a method for using our estimator to implement density confidence bands.
Large-scale eigenvalue problems arise in various fields of science and engineering and demand computationally efficient solutions. In this study, we investigate the subspace approximation for parametric linear eigenvalue problems, aiming to mitigate the computational burden associated with high-fidelity systems. We provide general error estimates under non-simple eigenvalue conditions, establishing the theoretical foundations for our methodology. Numerical examples, ranging from one-dimensional to three-dimensional setups, are presented to demonstrate the efficacy of reduced basis method in handling parametric variations in boundary conditions and coefficient fields to achieve significant computational savings while maintaining high accuracy, making them promising tools for practical applications in large-scale eigenvalue computations.
Unlabeled sensing is a linear inverse problem with permuted measurements. We propose an alternating minimization (AltMin) algorithm with a suitable initialization for two widely considered permutation models: partially shuffled/$k$-sparse permutations and $r$-local/block diagonal permutations. Key to the performance of the AltMin algorithm is the initialization. For the exact unlabeled sensing problem, assuming either a Gaussian measurement matrix or a sub-Gaussian signal, we bound the initialization error in terms of the number of blocks $s$ and the number of shuffles $k$. Experimental results show that our algorithm is fast, applicable to both permutation models, and robust to choice of measurement matrix. We also test our algorithm on several real datasets for the linked linear regression problem and show superior performance compared to baseline methods.
We consider the discretization of a class of nonlinear parabolic equations by discontinuous Galerkin time-stepping methods and establish a priori as well as conditional a posteriori error estimates. Our approach is motivated by the error analysis in [9] for Runge-Kutta methods for nonlinear parabolic equations; in analogy to [9], the proofs are based on maximal regularity properties of discontinuous Galerkin methods for non-autonomous linear parabolic equations.
This manuscript describes the notions of blocker and interdiction applied to well-known optimization problems. The main interest of these two concepts is the capability to analyze the existence of a combinatorial structure after some modifications. We focus on graph modification, like removing vertices or links in a network. In the interdiction version, we have a budget for modification to reduce as much as possible the size of a given combinatorial structure. Whereas, for the blocker version, we minimize the number of modifications such that the network does not contain a given combinatorial structure. Blocker and interdiction problems have some similarities and can be applied to well-known optimization problems. We consider matching, connectivity, shortest path, max flow, and clique problems. For these problems, we analyze either the blocker version or the interdiction one. Applying the concept of blocker or interdiction to well-known optimization problems can change their complexities. Some optimization problems become harder when one of these two notions is applied. For this reason, we propose some complexity analysis to show when an optimization problem, or the associated decision problem, becomes harder. Another fundamental aspect developed in the manuscript is the use of exact methods to tackle these optimization problems. The main way to solve these problems is to use integer linear programming to model them. An interesting aspect of integer linear programming is the possibility to analyze theoretically the strength of these models, using cutting planes. For most of the problems studied in this manuscript, a polyhedral analysis is performed to prove the strength of inequalities or describe new families of inequalities. The exact algorithms proposed are based on Branch-and-Cut or Branch-and-Price algorithm, where dedicated separation and pricing algorithms are proposed.
We derive information-theoretic generalization bounds for supervised learning algorithms based on the information contained in predictions rather than in the output of the training algorithm. These bounds improve over the existing information-theoretic bounds, are applicable to a wider range of algorithms, and solve two key challenges: (a) they give meaningful results for deterministic algorithms and (b) they are significantly easier to estimate. We show experimentally that the proposed bounds closely follow the generalization gap in practical scenarios for deep learning.