Federated Learning (FL) is a scheme for collaboratively training Deep Neural Networks (DNNs) with multiple data sources from different clients. Instead of sharing the data, each client trains the model locally, resulting in improved privacy. However, recently so-called targeted poisoning attacks have been proposed that allow individual clients to inject a backdoor into the trained model. Existing defenses against these backdoor attacks either rely on techniques like Differential Privacy to mitigate the backdoor, or analyze the weights of the individual models and apply outlier detection methods that restricts these defenses to certain data distributions. However, adding noise to the models' parameters or excluding benign outliers might also reduce the accuracy of the collaboratively trained model. Additionally, allowing the server to inspect the clients' models creates a privacy risk due to existing knowledge extraction methods. We propose CrowdGuard, a model filtering defense, that mitigates backdoor attacks by leveraging the clients' data to analyze the individual models before the aggregation. To prevent data leaks, the server sends the individual models to secure enclaves, running in client-located Trusted Execution Environments. To effectively distinguish benign and poisoned models, even if the data of different clients are not independently and identically distributed (non-IID), we introduce a novel metric called HLBIM to analyze the outputs of the DNN's hidden layers. We show that the applied significance-based detection algorithm combined can effectively detect poisoned models, even in non-IID scenarios. We show in our extensive evaluation that CrowdGuard can effectively mitigate targeted poisoning attacks and achieve in various scenarios a True-Positive-Rate of 100% and a True-Negative-Rate of 100%.
Federated Learning (FL) is a distributed machine learning approach where multiple clients work together to solve a machine learning task. One of the key challenges in FL is the issue of partial participation, which occurs when a large number of clients are involved in the training process. The traditional method to address this problem is randomly selecting a subset of clients at each communication round. In our research, we propose a new technique and design a novel regularized client participation scheme. Under this scheme, each client joins the learning process every $R$ communication rounds, which we refer to as a meta epoch. We have found that this participation scheme leads to a reduction in the variance caused by client sampling. Combined with the popular FedAvg algorithm (McMahan et al., 2017), it results in superior rates under standard assumptions. For instance, the optimization term in our main convergence bound decreases linearly with the product of the number of communication rounds and the size of the local dataset of each client, and the statistical term scales with step size quadratically instead of linearly (the case for client sampling with replacement), leading to better convergence rate $\mathcal{O}\left(\frac{1}{T^2}\right)$ compared to $\mathcal{O}\left(\frac{1}{T}\right)$, where $T$ is the total number of communication rounds. Furthermore, our results permit arbitrary client availability as long as each client is available for training once per each meta epoch.
Federated learning methods, that is, methods that perform model training using data situated across different sources, whilst simultaneously not having the data leave their original source, are of increasing interest in a number of fields. However, despite this interest, the classes of models for which easily-applicable and sufficiently general approaches are available is limited, excluding many structured probabilistic models. We present a general yet elegant resolution to the aforementioned issue. The approach is based on adopting structured variational inference, an approach widely used in Bayesian machine learning, to the federated setting. Additionally, a communication-efficient variant analogous to the canonical FedAvg algorithm is explored. The effectiveness of the proposed algorithms are demonstrated, and their performance is compared on Bayesian multinomial regression, topic modelling, and mixed model examples.
We study backdoor attacks in peer-to-peer federated learning systems on different graph topologies and datasets. We show that only 5% attacker nodes are sufficient to perform a backdoor attack with 42% attack success without decreasing the accuracy on clean data by more than 2%. We also demonstrate that the attack can be amplified by the attacker crashing a small number of nodes. We evaluate defenses proposed in the context of centralized federated learning and show they are ineffective in peer-to-peer settings. Finally, we propose a defense that mitigates the attacks by applying different clipping norms to the model updates received from peers and local model trained by a node.
Randomized ensemble classifiers (RECs), where one classifier is randomly selected during inference, have emerged as an attractive alternative to traditional ensembling methods for realizing adversarially robust classifiers with limited compute requirements. However, recent works have shown that existing methods for constructing RECs are more vulnerable than initially claimed, casting major doubts on their efficacy and prompting fundamental questions such as: "When are RECs useful?", "What are their limits?", and "How do we train them?". In this work, we first demystify RECs as we derive fundamental results regarding their theoretical limits, necessary and sufficient conditions for them to be useful, and more. Leveraging this new understanding, we propose a new boosting algorithm (BARRE) for training robust RECs, and empirically demonstrate its effectiveness at defending against strong $\ell_\infty$ norm-bounded adversaries across various network architectures and datasets.
Model compression can significantly reduce the sizes of deep neural network (DNN) models, and thus facilitates the dissemination of sophisticated, sizable DNN models, especially for their deployment on mobile or embedded devices. However, the prediction results of compressed models may deviate from those of their original models. To help developers thoroughly understand the impact of model compression, it is essential to test these models to find those deviated behaviors before dissemination. However, this is a non-trivial task because the architectures and gradients of compressed models are usually not available. To this end, we propose DFLARE, a novel, search-based, black-box testing technique to automatically find triggering inputs that result in deviated behaviors in image classification tasks. DFLARE iteratively applies a series of mutation operations to a given seed image, until a triggering input is found. For better efficacy and efficiency, DFLARE models the search problem as Markov Chains and leverages the Metropolis-Hasting algorithm to guide the selection of mutation operators in each iteration. Further, DFLARE utilizes a novel fitness function to prioritize the mutated inputs that either cause large differences between two models' outputs, or trigger previously unobserved models' probability vectors. We evaluated DFLARE on 21 compressed models for image classification tasks with three datasets. The results show that DFLARE outperforms the baseline in terms of efficacy and efficiency. We also demonstrated that the triggering inputs found by DFLARE can be used to repair up to 48.48% deviated behaviors in image classification tasks and further decrease the effectiveness of DFLARE on the repaired models.
Adversarial attack serves as a major challenge for neural network models in NLP, which precludes the model's deployment in safety-critical applications. A recent line of work, detection-based defense, aims to distinguish adversarial sentences from benign ones. However, {the core limitation of previous detection methods is being incapable of giving correct predictions on adversarial sentences unlike defense methods from other paradigms.} To solve this issue, this paper proposes TextShield: (1) we discover a link between text attack and saliency information, and then we propose a saliency-based detector, which can effectively detect whether an input sentence is adversarial or not. (2) We design a saliency-based corrector, which converts the detected adversary sentences to benign ones. By combining the saliency-based detector and corrector, TextShield extends the detection-only paradigm to a detection-correction paradigm, thus filling the gap in the existing detection-based defense. Comprehensive experiments show that (a) TextShield consistently achieves higher or comparable performance than state-of-the-art defense methods across various attacks on different benchmarks. (b) our saliency-based detector outperforms existing detectors for detecting adversarial sentences.
Deep learning achieves outstanding results in many machine learning tasks. Nevertheless, it is vulnerable to backdoor attacks that modify the training set to embed a secret functionality in the trained model. The modified training samples have a secret property, i.e., a trigger. At inference time, the secret functionality is activated when the input contains the trigger, while the model functions correctly in other cases. While there are many known backdoor attacks (and defenses), deploying a stealthy attack is still far from trivial. Successfully creating backdoor triggers heavily depends on numerous parameters. Unfortunately, research has not yet determined which parameters contribute most to the attack performance. This paper systematically analyzes the most relevant parameters for the backdoor attacks, i.e., trigger size, position, color, and poisoning rate. Using transfer learning, which is very common in computer vision, we evaluate the attack on numerous state-of-the-art models (ResNet, VGG, AlexNet, and GoogLeNet) and datasets (MNIST, CIFAR10, and TinyImageNet). Our attacks cover the majority of backdoor settings in research, providing concrete directions for future works. Our code is publicly available to facilitate the reproducibility of our results.
Reliability is one of the major design criteria in Cyber-Physical Systems (CPSs). This is because of the existence of some critical applications in CPSs and their failure is catastrophic. Therefore, employing strong error detection and correction mechanisms in CPSs is inevitable. CPSs are composed of a variety of units, including sensors, networks, and microcontrollers. Each of these units is probable to be in a faulty state at any time and the occurred fault can result in erroneous output. The fault may cause the units of CPS to malfunction and eventually crash. Traditional fault-tolerant approaches include redundancy time, hardware, information, and/or software. However, these approaches impose significant overheads besides their low error coverage, which limits their applicability. In addition, the interval between error occurrence and detection is too long in these approaches. In this paper, based on Deep Reinforcement Learning (DRL), a new error detection approach is proposed that not only detects errors with high accuracy but also can perform error detection at the moment due to very low inference time. The proposed approach can categorize different types of errors from normal data and predict whether the system will fail. The evaluation results illustrate that the proposed approach has improved more than 2x in terms of accuracy and more than 5x in terms of inference time compared to other approaches.
Traffic systems are multi-agent cyber-physical systems whose performance is closely related to human welfare. They work in open environments and are subject to uncertainties from various sources, making their performance hard to verify by traditional model-based approaches. Alternatively, statistical model checking (SMC) can verify their performance by sequentially drawing sample data until the correctness of a performance specification can be inferred with desired statistical accuracy. This work aims to verify traffic systems with privacy, motivated by the fact that the data used may include personal information (e.g., daily itinerary) and get leaked unintendedly by observing the execution of the SMC algorithm. To formally capture data privacy in SMC, we introduce the concept of expected differential privacy (EDP), which constrains how much the algorithm execution can change in the expectation sense when data change. Accordingly, we introduce an exponential randomization mechanism for the SMC algorithm to achieve the EDP. Our case study on traffic intersections by Vissim simulation shows the high accuracy of SMC in traffic model verification without significantly sacrificing computing efficiency. The case study also shows EDP successfully bounding the algorithm outputs to guarantee privacy.
As data are increasingly being stored in different silos and societies becoming more aware of data privacy issues, the traditional centralized training of artificial intelligence (AI) models is facing efficiency and privacy challenges. Recently, federated learning (FL) has emerged as an alternative solution and continue to thrive in this new reality. Existing FL protocol design has been shown to be vulnerable to adversaries within or outside of the system, compromising data privacy and system robustness. Besides training powerful global models, it is of paramount importance to design FL systems that have privacy guarantees and are resistant to different types of adversaries. In this paper, we conduct the first comprehensive survey on this topic. Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic. We highlight the intuitions, key techniques as well as fundamental assumptions adopted by various attacks and defenses. Finally, we discuss promising future research directions towards robust and privacy-preserving federated learning.