亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Code comment generation aims at generating natural language descriptions for a code snippet to facilitate developers' program comprehension activities. Despite being studied for a long time, a bottleneck for existing approaches is that given a code snippet, they can only generate one comment while developers usually need to know information from diverse perspectives such as what is the functionality of this code snippet and how to use it. To tackle this limitation, this study empirically investigates the feasibility of utilizing large language models (LLMs) to generate comments that can fulfill developers' diverse intents. Our intuition is based on the facts that (1) the code and its pairwise comment are used during the pre-training process of LLMs to build the semantic connection between the natural language and programming language, and (2) comments in the real-world projects, which are collected for the pre-training, usually contain different developers' intents. We thus postulate that the LLMs can already understand the code from different perspectives after the pre-training. Indeed, experiments on two large-scale datasets demonstrate the rationale of our insights: by adopting the in-context learning paradigm and giving adequate prompts to the LLM (e.g., providing it with ten or more examples), the LLM can significantly outperform a state-of-the-art supervised learning approach on generating comments with multiple intents. Results also show that customized strategies for constructing the prompts and post-processing strategies for reranking the results can both boost the LLM's performances, which shed light on future research directions for using LLMs to achieve comment generation.

相關內容

Code comment generation aims at generating natural language descriptions for a code snippet to facilitate developers' program comprehension activities. Despite being studied for a long time, a bottleneck for existing approaches is that given a code snippet, they can only generate one comment while developers usually need to know information from diverse perspectives such as what is the functionality of this code snippet and how to use it. To tackle this limitation, this study empirically investigates the feasibility of utilizing large language models (LLMs) to generate comments that can fulfill developers' diverse intents. Our intuition is based on the facts that (1) the code and its pairwise comment are used during the pre-training process of LLMs to build the semantic connection between the natural language and programming language, and (2) comments in the real-world projects, which are collected for the pre-training, usually contain different developers' intents. We thus postulate that the LLMs can already understand the code from different perspectives after the pre-training. Indeed, experiments on two large-scale datasets demonstrate the rationale of our insights: by adopting the in-context learning paradigm and giving adequate prompts to the LLM (e.g., providing it with ten or more examples), the LLM can significantly outperform a state-of-the-art supervised learning approach on generating comments with multiple intents. Results also show that customized strategies for constructing the prompts and post-processing strategies for reranking the results can both boost the LLM's performances, which shed light on future research directions for using LLMs to achieve comment generation.

Despite the existence of various benchmarks for evaluating natural language processing models, we argue that human exams are a more suitable means of evaluating general intelligence for large language models (LLMs), as they inherently demand a much wider range of abilities such as language understanding, domain knowledge, and problem-solving skills. To this end, we introduce M3Exam, a novel benchmark sourced from real and official human exam questions for evaluating LLMs in a multilingual, multimodal, and multilevel context. M3Exam exhibits three unique characteristics: (1) multilingualism, encompassing questions from multiple countries that require strong multilingual proficiency and cultural knowledge; (2) multimodality, accounting for the multimodal nature of many exam questions to test the model's multimodal understanding capability; and (3) multilevel structure, featuring exams from three critical educational periods to comprehensively assess a model's proficiency at different levels. In total, M3Exam contains 12,317 questions in 9 diverse languages with three educational levels, where about 23\% of the questions require processing images for successful solving. We assess the performance of top-performing LLMs on M3Exam and find that current models, including GPT-4, still struggle with multilingual text, particularly in low-resource and non-Latin script languages. Multimodal LLMs also perform poorly with complex multimodal questions. We believe that M3Exam can be a valuable resource for comprehensively evaluating LLMs by examining their multilingual and multimodal abilities and tracking their development. Data and evaluation code is available at \url{//github.com/DAMO-NLP-SG/M3Exam}.

Large language models generate fluent texts and can follow natural language instructions to solve a wide range of tasks without task-specific training. Nevertheless, it is notoriously difficult to control their generation to satisfy the various constraints required by different applications. In this work, we present InstructCTG, a controlled text generation framework that incorporates different constraints by conditioning on natural language descriptions and demonstrations of the constraints. In particular, we first extract the underlying constraints of natural texts through a combination of off-the-shelf NLP tools and simple heuristics. We then verbalize the constraints into natural language instructions to form weakly supervised training data. By prepending natural language descriptions of the constraints and a few demonstrations, we fine-tune a pre-trained language model to incorporate various types of constraints. Compared to existing search-based or score-based methods, InstructCTG is more flexible to different constraint types and has a much smaller impact on the generation quality and speed because it does not modify the decoding procedure. Additionally, InstructCTG allows the model to adapt to new constraints without re-training through the use of few-shot task generalization and in-context learning abilities of instruction-tuned language models.

Code LLMs are being rapidly deployed and there is evidence that they can make professional programmers more productive. Current benchmarks for code generation measure whether models generate correct programs given an expert prompt. In this paper, we present a new benchmark containing multiple prompts per problem, written by a specific population of non-expert prompters: beginning programmers. StudentEval contains 1,749 prompts for 48 problems, written by 80 students who have only completed one semester of Python programming. Our students wrote these prompts while working interactively with a Code LLM, and we observed very mixed success rates. We use StudentEval to evaluate 5 Code LLMs and find that StudentEval is a better discriminator of model performance than existing benchmarks. We analyze the prompts and find significant variation in students' prompting techniques. We also find that nondeterministic LLM sampling could mislead students into thinking that their prompts are more (or less) effective than they actually are, which has implications for how to teach with Code LLMs.

Large Language Models (LLMs) have made remarkable advancements in the field of artificial intelligence, significantly reshaping the human-computer interaction. We not only focus on the performance of LLMs, but also explore their features from a psychological perspective, acknowledging the importance of understanding their behavioral characteristics. Our study examines the behavioral patterns displayed by LLMs by employing trait theory, a psychological framework. We first focus on evaluating the consistency of personality types exhibited by ChatGPT. Furthermore, experiments include cross-lingual effects on seven additional languages, and the investigation of six other LLMs. Moreover, the study investigates whether ChatGPT can exhibit personality changes in response to instructions or contextual cues. The findings show that ChatGPT consistently maintains its ENFJ personality regardless of instructions or contexts. By shedding light on the personalization of LLMs, we anticipate that our study will serve as a catalyst for further research in this field.

The increasingly large size of modern pretrained language models not only makes them inherit more human-like biases from the training corpora, but also makes it computationally expensive to mitigate such biases. In this paper, we investigate recent parameter-efficient methods in combination with counterfactual data augmentation (CDA) for bias mitigation. We conduct extensive experiments with prefix tuning, prompt tuning, and adapter tuning on different language models and bias types to evaluate their debiasing performance and abilities to preserve the internal knowledge of a pre-trained model. We find that the parameter-efficient methods (i) are effective in mitigating gender bias, where adapter tuning is consistently the most effective one and prompt tuning is more suitable for GPT-2 than BERT, (ii) are less effective when it comes to racial and religious bias, which may be attributed to the limitations of CDA, and (iii) can perform similarly to or sometimes better than full fine-tuning with improved time and memory efficiency, as well as maintain the internal knowledge in BERT and GPT-2, evaluated via fact retrieval and downstream fine-tuning.

Text-to-image diffusion models have demonstrated an unparalleled ability to generate high-quality, diverse images from a textual concept (e.g., "a doctor", "love"). However, the internal process of mapping text to a rich visual representation remains an enigma. In this work, we tackle the challenge of understanding concept representations in text-to-image models by decomposing an input text prompt into a small set of interpretable elements. This is achieved by learning a pseudo-token that is a sparse weighted combination of tokens from the model's vocabulary, with the objective of reconstructing the images generated for the given concept. Applied over the state-of-the-art Stable Diffusion model, this decomposition reveals non-trivial and surprising structures in the representations of concepts. For example, we find that some concepts such as "a president" or "a composer" are dominated by specific instances (e.g., "Obama", "Biden") and their interpolations. Other concepts, such as "happiness" combine associated terms that can be concrete ("family", "laughter") or abstract ("friendship", "emotion"). In addition to peering into the inner workings of Stable Diffusion, our method also enables applications such as single-image decomposition to tokens, bias detection and mitigation, and semantic image manipulation. Our code will be available at: //hila-chefer.github.io/Conceptor/

While deep-learning models have been shown to perform well on image-to-text datasets, it is difficult to use them in practice for captioning images. This is because captions traditionally tend to be context-dependent and offer complementary information about an image, while models tend to produce descriptions that describe the visual features of the image. Prior research in caption generation has explored the use of models that generate captions when provided with the images alongside their respective descriptions or contexts. We propose and evaluate a new approach, which leverages existing large language models to generate captions from textual descriptions and context alone, without ever processing the image directly. We demonstrate that after fine-tuning, our approach outperforms current state-of-the-art image-text alignment models like OSCAR-VinVL on this task on the CIDEr metric.

Software specifications are essential for ensuring the reliability of software systems. Existing specification extraction approaches, however, suffer from limited generalizability and require manual efforts. We study the effectiveness of Large Language Models (LLMs) in generating software specifications from software documentation, utilizing Few-Shot Learning (FSL) to enable LLMs to generalize from a small number of examples. We compare the performance of LLMs with FSL to that of state-of-the-art specification extraction techniques and study the impact of prompt construction strategies on LLM performance. In addition, we conduct a comprehensive analysis of their symptoms and root causes of the failures to understand the pros and cons of LLMs and existing approaches. We also compare 11 LLMs' performance, cost, and response time for generating software specifications. Our findings include that (1) the best performing LLM outperforms existing approaches by 9.1--13.7% with a few similar examples, (2) the two dominant root causes combined (ineffective prompts and missing domain knowledge) result in 57--60% of LLM failures, and (3) most of the 11 LLMs achieve better or comparable performance compared to traditional techniques. Our study offers valuable insights for future research to improve specification generation.

With the success of large language models (LLMs) of code and their use as code assistants (e.g. Codex used in GitHub Copilot), techniques for introducing domain-specific knowledge in the prompt design process become important. In this work, we propose a framework called Repo-Level Prompt Generator that learns to generate example-specific prompts using prompt proposals. The prompt proposals take context from the entire repository, thereby incorporating both the structure of the repository and the context from other relevant files (e.g. imports, parent class files). Our technique doesn't require any access to the weights of the LLM, making it applicable in cases where we only have black-box access to the LLM. We conduct experiments on the task of single-line code-autocompletion using code repositories taken from Google Code archives. We demonstrate that an oracle constructed from our prompt proposals gives a remarkably high relative improvement of 36% over Codex, showing the quality of these proposals. Further, we show that when we train a model to predict a prompt proposal, we can achieve significant performance gains over Codex and other baselines. We release our code, data, and trained checkpoints at: \url{//github.com/shrivastavadisha/repo_level_prompt_generation}.

北京阿比特科技有限公司