In this paper, we consider a transformation of $k$ disjoint paths in a graph. For a graph and a pair of $k$ disjoint paths $\mathcal{P}$ and $\mathcal{Q}$ connecting the same set of terminal pairs, we aim to determine whether $\mathcal{P}$ can be transformed to $\mathcal{Q}$ by repeatedly replacing one path with another path so that the intermediates are also $k$ disjoint paths. The problem is called Disjoint Paths Reconfiguration. We first show that Disjoint Paths Reconfiguration is PSPACE-complete even when $k=2$. On the other hand, we prove that, when the graph is embedded on a plane and all paths in $\mathcal{P}$ and $\mathcal{Q}$ connect the boundaries of two faces, Disjoint Paths Reconfiguration can be solved in polynomial time. The algorithm is based on a topological characterization for rerouting curves on a plane using the algebraic intersection number. We also consider a transformation of disjoint $s$-$t$ paths as a variant. We show that the disjoint $s$-$t$ paths reconfiguration problem in planar graphs can be determined in polynomial time, while the problem is PSPACE-complete in general.
Many solid mechanics problems on complex geometries are conventionally solved using discrete boundary methods. However, such an approach can be cumbersome for problems involving evolving domain boundaries due to the need to track boundaries and constant remeshing. In this work, we employ a robust smooth boundary method (SBM) that represents complex geometry implicitly, in a larger and simpler computational domain, as the support of a smooth indicator function. We present the resulting equations for mechanical equilibrium, in which inhomogeneous boundary conditions are replaced by source terms. The resulting mechanical equilibrium problem is semidefinite, making it difficult to solve. In this work, we present a computational strategy for efficiently solving near-singular SBM elasticity problems. We use the block-structured adaptive mesh refinement (BSAMR) method for resolving evolving boundaries appropriately, coupled with a geometric multigrid solver for an efficient solution of mechanical equilibrium. We discuss some of the practical numerical strategies for implementing this method, notably including the importance of grid versus node-centered fields. We demonstrate the solver's accuracy and performance for three representative examples: a) plastic strain evolution around a void, b) crack nucleation and propagation in brittle materials, and c) structural topology optimization. In each case, we show that very good convergence of the solver is achieved, even with large near-singular areas, and that any convergence issues arise from other complexities, such as stress concentrations. We present this framework as a versatile tool for studying a wide variety of solid mechanics problems involving variable geometry.
The present study is an extension of the work done in [16] and [10], where a two-level Parareal method with averaging was examined. The method proposed in this paper is a multi-level Parareal method with arbitrarily many levels, which is not restricted to the two-level case. We give an asymptotic error estimate which reduces to the two-level estimate for the case when only two levels are considered. Introducing more than two levels has important consequences for the averaging procedure, as we choose separate averaging windows for each of the different levels, which is an additional new feature of the present study. The different averaging windows make the proposed method especially appropriate for multi-scale problems, because we can introduce a level for each intrinsic scale of the problem and adapt the averaging procedure such that we reproduce the behavior of the model on the particular scale resolved by the level.
Batch trading systems and constant function market makers (CFMMs) are two distinct market design innovations that have recently come to prominence as ways to address some of the shortcomings of decentralized trading systems. However, different deployments have chosen substantially different methods for integrating the two innovations. We show here from a minimal set of axioms describing the beneficial properties of each innovation that there is in fact only one, unique method for integrating CFMMs into batch trading schemes that preserves all the beneficial properties of both. Deployment of a batch trading schemes trading many assets simultaneously requires a reliable algorithm for approximating equilibria in Arrow-Debreu exchange markets. We study this problem when batches contain limit orders and CFMMs. Specifically, we find that CFMM design affects the asymptotic complexity of the problem, give an easily-checkable criterion to validate that a user-submitted CFMM is computationally tractable in a batch, and give a convex program that computes equilibria on batches of limit orders and CFMMs. Equivalently, this convex program computes equilibria of Arrow-Debreu exchange markets when every agent's demand response satisfies weak gross substitutability and every agent has utility for only two types of assets. This convex program has rational solutions when run on many (but not all) natural classes of widely-deployed CFMMs.
Recent successes of massively overparameterized models have inspired a new line of work investigating the underlying conditions that enable overparameterized models to generalize well. This paper considers a framework where the possibly overparametrized model includes fake features, i.e., features that are present in the model but not in the data. We present a non-asymptotic high-probability bound on the generalization error of the ridge regression problem under the model misspecification of having fake features. Our high-probability results characterize the interplay between the implicit regularization provided by the fake features and the explicit regularization provided by the ridge parameter. We observe that fake features may improve the generalization error, even though they are irrelevant to the data.
Our aim is to develop dynamic data structures that support $k$-nearest neighbors ($k$-NN) queries for a set of $n$ point sites in the plane in $O(f(n) + k)$ time, where $f(n)$ is some polylogarithmic function of $n$. The key component is a general query algorithm that allows us to find the $k$-NN spread over $t$ substructures simultaneously, thus reducing an $O(tk)$ term in the query time to $O(k)$. Combining this technique with the logarithmic method allows us to turn any static $k$-NN data structure into a data structure supporting both efficient insertions and queries. For the fully dynamic case, this technique allows us to recover the deterministic, worst-case, $O(\log^2n/\log\log n +k)$ query time for the Euclidean distance claimed before, while preserving the polylogarithmic update times. We adapt this data structure to also support fully dynamic \emph{geodesic} $k$-NN queries among a set of sites in a simple polygon. For this purpose, we design a shallow cutting based, deletion-only $k$-NN data structure. More generally, we obtain a dynamic planar $k$-NN data structure for any type of distance functions for which we can build vertical shallow cuttings. We apply all of our methods in the plane for the Euclidean distance, the geodesic distance, and general, constant-complexity, algebraic distance functions.
Multi-label learning is often used to mine the correlation between variables and multiple labels, and its research focuses on fully extracting the information between variables and labels. The $\ell_{2,1}$ regularization is often used to get a sparse coefficient matrix, but the problem of multicollinearity among variables cannot be effectively solved. In this paper, the proposed model can choose the most relevant variables by solving a joint constraint optimization problem using the $\ell_{2,1}$ regularization and Frobenius regularization. In manifold regularization, we carry out a random walk strategy based on the joint structure to construct a neighborhood graph, which is highly robust to outliers. In addition, we give an iterative algorithm of the proposed method and proved the convergence of this algorithm. The experiments on the real-world data sets also show that the comprehensive performance of our method is consistently better than the classical method.
Downsampling produces coarsened, multi-resolution representations of data and it is used, for example, to produce lossy compression and visualization of large images, reduce computational costs, and boost deep neural representation learning. Unfortunately, due to their lack of a regular structure, there is still no consensus on how downsampling should apply to graphs and linked data. Indeed reductions in graph data are still needed for the goals described above, but reduction mechanisms do not have the same focus on preserving topological structures and properties, while allowing for resolution-tuning, as is the case in regular data downsampling. In this paper, we take a step in this direction, introducing a unifying interpretation of downsampling in regular and graph data. In particular, we define a graph coarsening mechanism which is a graph-structured counterpart of controllable equispaced coarsening mechanisms in regular data. We prove theoretical guarantees for distortion bounds on path lengths, as well as the ability to preserve key topological properties in the coarsened graphs. We leverage these concepts to define a graph pooling mechanism that we empirically assess in graph classification tasks, providing a greedy algorithm that allows efficient parallel implementation on GPUs, and showing that it compares favorably against pooling methods in literature.
Let $G=(V,E)$ be a multigraph with a set $T\subseteq V$ of terminals. A path in $G$ is called a $T$-path if its ends are distinct vertices in $T$ and no internal vertices belong to $T$. In 1978, Mader showed a characterization of the maximum number of edge-disjoint $T$-paths. In this paper, we provide a combinatorial, deterministic algorithm for finding the maximum number of edge-disjoint $T$-paths. The algorithm adopts an augmenting path approach. More specifically, we utilize a new concept of short augmenting walks in auxiliary labeled graphs to capture a possible augmentation of the number of edge-disjoint $T$-paths. To design a search procedure for a short augmenting walk, we introduce blossoms analogously to the matching algorithm of Edmonds (1965). When the search procedure terminates without finding a short augmenting walk, the algorithm provides a certificate for the optimality of the current edge-disjoint $T$-paths. From this certificate, one can obtain the Edmonds--Gallai type decomposition introduced by Seb\H{o} and Szeg\H{o} (2004). The algorithm runs in $O(|E|^2)$ time, which is much faster than the best known deterministic algorithm based on a reduction to linear matroid parity. We also present a strongly polynomial algorithm for the maximum integer free multiflow problem, which asks for a nonnegative integer combination of $T$-paths maximizing the sum of the coefficients subject to capacity constraints on the edges.
The accurate and interpretable prediction of future events in time-series data often requires the capturing of representative patterns (or referred to as states) underpinning the observed data. To this end, most existing studies focus on the representation and recognition of states, but ignore the changing transitional relations among them. In this paper, we present evolutionary state graph, a dynamic graph structure designed to systematically represent the evolving relations (edges) among states (nodes) along time. We conduct analysis on the dynamic graphs constructed from the time-series data and show that changes on the graph structures (e.g., edges connecting certain state nodes) can inform the occurrences of events (i.e., time-series fluctuation). Inspired by this, we propose a novel graph neural network model, Evolutionary State Graph Network (EvoNet), to encode the evolutionary state graph for accurate and interpretable time-series event prediction. Specifically, Evolutionary State Graph Network models both the node-level (state-to-state) and graph-level (segment-to-segment) propagation, and captures the node-graph (state-to-segment) interactions over time. Experimental results based on five real-world datasets show that our approach not only achieves clear improvements compared with 11 baselines, but also provides more insights towards explaining the results of event predictions.
Inferring missing links in knowledge graphs (KG) has attracted a lot of attention from the research community. In this paper, we tackle a practical query answering task involving predicting the relation of a given entity pair. We frame this prediction problem as an inference problem in a probabilistic graphical model and aim at resolving it from a variational inference perspective. In order to model the relation between the query entity pair, we assume that there exists an underlying latent variable (paths connecting two nodes) in the KG, which carries the equivalent semantics of their relations. However, due to the intractability of connections in large KGs, we propose to use variation inference to maximize the evidence lower bound. More specifically, our framework (\textsc{Diva}) is composed of three modules, i.e. a posterior approximator, a prior (path finder), and a likelihood (path reasoner). By using variational inference, we are able to incorporate them closely into a unified architecture and jointly optimize them to perform KG reasoning. With active interactions among these sub-modules, \textsc{Diva} is better at handling noise and coping with more complex reasoning scenarios. In order to evaluate our method, we conduct the experiment of the link prediction task on multiple datasets and achieve state-of-the-art performances on both datasets.