Melanoma is the most severe type of skin cancer due to its ability to cause metastasis. It is more common in black people, often affecting acral regions: palms, soles, and nails. Deep neural networks have shown tremendous potential for improving clinical care and skin cancer diagnosis. Nevertheless, prevailing studies predominantly rely on datasets of white skin tones, neglecting to report diagnostic outcomes for diverse patient skin tones. In this work, we evaluate supervised and self-supervised models in skin lesion images extracted from acral regions commonly observed in black individuals. Also, we carefully curate a dataset containing skin lesions in acral regions and assess the datasets concerning the Fitzpatrick scale to verify performance on black skin. Our results expose the poor generalizability of these models, revealing their favorable performance for lesions on white skin. Neglecting to create diverse datasets, which necessitates the development of specialized models, is unacceptable. Deep neural networks have great potential to improve diagnosis, particularly for populations with limited access to dermatology. However, including black skin lesions is necessary to ensure these populations can access the benefits of inclusive technology.
Biophilia is an innate love for living things and nature itself that has been associated with a positive impact on mental health and well-being. This study explores the application of deep learning methods for the classification of Biophilic artwork, in order to learn and explain the different Biophilic characteristics present in a visual representation of a painting. Using the concept of Biophilia that postulates the deep connection of human beings with nature, we use an artificially intelligent algorithm to recognise the different patterns underlying the Biophilic features in an artwork. Our proposed method uses a lower-dimensional representation of an image and a decoder model to extract salient features of the image of each Biophilic trait, such as plants, water bodies, seasons, animals, etc., based on learnt factors such as shape, texture, and illumination. The proposed classification model is capable of extracting Biophilic artwork that not only helps artists, collectors, and researchers studying to interpret and exploit the effects of mental well-being on exposure to nature-inspired visual aesthetics but also enables a methodical exploration of the study of Biophilia and Biophilic artwork for aesthetic preferences. Using the proposed algorithms, we have also created a gallery of Biophilic collections comprising famous artworks from different European and American art galleries, which will soon be published on the Vieunite@ online community.
Rehabilitation therapies are widely employed to assist people with motor impairments in regaining control over their affected body parts. Nevertheless, factors such as fatigue and low self-efficacy can hinder patient compliance during extensive rehabilitation processes. Utilizing hand redirection in virtual reality (VR) enables patients to accomplish seemingly more challenging tasks, thereby bolstering their motivation and confidence. While previous research has investigated user experience and hand redirection among able-bodied people, its effects on motor-impaired people remain unexplored. In this paper, we present a VR rehabilitation application that harnesses hand redirection. Through a user study and semi-structured interviews, we examine the impact of hand redirection on the rehabilitation experiences of people with motor impairments and its potential to enhance their motivation for upper limb rehabilitation. Our findings suggest that patients are not sensitive to hand movement inconsistency, and the majority express interest in incorporating hand redirection into future long-term VR rehabilitation programs.
In recent months, the social impact of Artificial Intelligence (AI) has gained considerable public interest, driven by the emergence of Generative AI models, ChatGPT in particular. The rapid development of these models has sparked heated discussions regarding their benefits, limitations, and associated risks. Generative models hold immense promise across multiple domains, such as healthcare, finance, and education, to cite a few, presenting diverse practical applications. Nevertheless, concerns about potential adverse effects have elicited divergent perspectives, ranging from privacy risks to escalating social inequality. This paper adopts a methodology to delve into the societal implications of Generative AI tools, focusing primarily on the case of ChatGPT. It evaluates the potential impact on several social sectors and illustrates the findings of a comprehensive literature review of both positive and negative effects, emerging trends, and areas of opportunity of Generative AI models. This analysis aims to facilitate an in-depth discussion by providing insights that can inspire policy, regulation, and responsible development practices to foster a human-centered AI.
Large language models (LLMs) need to serve everyone, including a global majority of non-English speakers. However, most LLMs today, and open LLMs in particular, are often intended for use in just English (e.g. Llama2, Mistral) or a small handful of high-resource languages (e.g. Mixtral, Qwen). Recent research shows that, despite limits in their intended use, people prompt LLMs in many different languages. Therefore, in this paper, we investigate the basic multilingual capabilities of state-of-the-art open LLMs beyond their intended use. For this purpose, we introduce MultiQ, a new silver standard benchmark for basic open-ended question answering with 27.4k test questions across a typologically diverse set of 137 languages. With MultiQ, we evaluate language fidelity, i.e.\ whether models respond in the prompted language, and question answering accuracy. All LLMs we test respond faithfully and/or accurately for at least some languages beyond their intended use. Most models are more accurate when they respond faithfully. However, differences across models are large, and there is a long tail of languages where models are neither accurate nor faithful. We explore differences in tokenization as a potential explanation for our findings, identifying possible correlations that warrant further investigation.
Computed Tomography (CT) is a widely used medical imaging modality, and as it is based on ionizing radiation, it is desirable to minimize the radiation dose. However, a reduced radiation dose comes with reduced image quality, and reconstruction from low-dose CT (LDCT) data is still a challenging task which is subject to research. According to the LoDoPaB-CT benchmark, a benchmark for LDCT reconstruction, many state-of-the-art methods use pipelines involving UNet-type architectures. Specifically the top ranking method, ItNet, employs a three-stage process involving filtered backprojection (FBP), a UNet trained on CT data, and an iterative refinement step. In this paper, we propose a less complex two-stage method. The first stage also employs FBP, while the novelty lies in the training strategy for the second stage, characterized as the CT image enhancement stage. The crucial point of our approach is that the neural network is pretrained on a distinctly different pretraining task with non-CT data, namely Gaussian noise removal on a variety of natural grayscale images (photographs). We then fine-tune this network for the downstream task of CT image enhancement using pairs of LDCT images and corresponding normal-dose CT images (NDCT). Despite being notably simpler than the state-of-the-art, as the pretraining did not depend on domain-specific CT data and no further iterative refinement step was necessary, the proposed two-stage method achieves competitive results. The proposed method achieves a shared top ranking in the LoDoPaB-CT challenge and a first position with respect to the SSIM metric.
For robots to perform assistive tasks in unstructured home environments, they must learn and reason on the semantic knowledge of the environments. Despite a resurgence in the development of semantic reasoning architectures, these methods assume that all the training data is available a priori. However, each user's environment is unique and can continue to change over time, which makes these methods unsuitable for personalized home service robots. Although research in continual learning develops methods that can learn and adapt over time, most of these methods are tested in the narrow context of object classification on static image datasets. In this paper, we combine ideas from continual learning, semantic reasoning, and interactive machine learning literature and develop a novel interactive continual learning architecture for continual learning of semantic knowledge in a home environment through human-robot interaction. The architecture builds on core cognitive principles of learning and memory for efficient and real-time learning of new knowledge from humans. We integrate our architecture with a physical mobile manipulator robot and perform extensive system evaluations in a laboratory environment over two months. Our results demonstrate the effectiveness of our architecture to allow a physical robot to continually adapt to the changes in the environment from limited data provided by the users (experimenters), and use the learned knowledge to perform object fetching tasks.
Explainability of AI systems is critical for users to take informed actions. Understanding "who" opens the black-box of AI is just as important as opening it. We conduct a mixed-methods study of how two different groups--people with and without AI background--perceive different types of AI explanations. Quantitatively, we share user perceptions along five dimensions. Qualitatively, we describe how AI background can influence interpretations, elucidating the differences through lenses of appropriation and cognitive heuristics. We find that (1) both groups showed unwarranted faith in numbers for different reasons and (2) each group found value in different explanations beyond their intended design. Carrying critical implications for the field of XAI, our findings showcase how AI generated explanations can have negative consequences despite best intentions and how that could lead to harmful manipulation of trust. We propose design interventions to mitigate them.
Predictions obtained by, e.g., artificial neural networks have a high accuracy but humans often perceive the models as black boxes. Insights about the decision making are mostly opaque for humans. Particularly understanding the decision making in highly sensitive areas such as healthcare or fifinance, is of paramount importance. The decision-making behind the black boxes requires it to be more transparent, accountable, and understandable for humans. This survey paper provides essential definitions, an overview of the different principles and methodologies of explainable Supervised Machine Learning (SML). We conduct a state-of-the-art survey that reviews past and recent explainable SML approaches and classifies them according to the introduced definitions. Finally, we illustrate principles by means of an explanatory case study and discuss important future directions.
Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.
Clinical Named Entity Recognition (CNER) aims to identify and classify clinical terms such as diseases, symptoms, treatments, exams, and body parts in electronic health records, which is a fundamental and crucial task for clinical and translational research. In recent years, deep neural networks have achieved significant success in named entity recognition and many other Natural Language Processing (NLP) tasks. Most of these algorithms are trained end to end, and can automatically learn features from large scale labeled datasets. However, these data-driven methods typically lack the capability of processing rare or unseen entities. Previous statistical methods and feature engineering practice have demonstrated that human knowledge can provide valuable information for handling rare and unseen cases. In this paper, we address the problem by incorporating dictionaries into deep neural networks for the Chinese CNER task. Two different architectures that extend the Bi-directional Long Short-Term Memory (Bi-LSTM) neural network and five different feature representation schemes are proposed to handle the task. Computational results on the CCKS-2017 Task 2 benchmark dataset show that the proposed method achieves the highly competitive performance compared with the state-of-the-art deep learning methods.