亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In-situ processing has widely been recognized as an effective approach for the visualization and analysis of large-scale simulation outputs from modern HPC systems. One of the most common approaches for batch-based in-situ visualization is the image- or video-based approach. In this kind of approach, a large number of rendered images are generated from different viewpoints at each time step and has proven useful for detailed analysis of the main simulation results. However, during test runs and model calibration runs before the main simulation run, a quick overview might be sufficient and useful. In this work, we focused on selecting the viewpoints which provide as much information as possible by using information entropy to maximize the subsequent visual analysis task. However, by simply following the selected viewpoints at each of the visualization time steps will probably lead to a rapidly changing video, which can impact the understanding. Therefore, we have also worked on an efficient camera path estimation approach for connecting selected viewpoints, at regular intervals, to generate a smooth video. This resulting video is expected to assist in rapid understanding of the underlying simulation phenomena and can be helpful to narrow down the temporal region of interest to minimize the turnaround time during detailed visual exploration via image- or video-based visual analysis of the main simulation run. We implemented and evaluated the proposed approach using the OpenFOAM CFD application, on an x86-based Server and an ARM A64FX-based supercomputer (Fugaku), and we obtained positive evaluations from domain scientists.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · 極小值 · 區塊鏈 · · 可約的 ·
2023 年 3 月 20 日

Nakamoto consensus has been incredibly influential in enabling robust blockchain systems, and one of its components is the so-called heaviest chain rule (HCR). Within this rule, the calculation of the weight of the chain tip is performed by adding the difficulty threshold value to the previous total difficulty. Current difficulty based weighting systems do not take the intrinsic block weight into account. This paper studies a new mechanism based on entropy differences, named proof of entropy minima (POEM), which incorporates the intrinsic block weight in a manner that significantly reduces the orphan rate of the blockchain while simultaneously accelerating finalization. Finally, POEM helps to understand blockchain as a static time-independent sequence of committed events.

We develop an optimization-based algorithm for parametric model order reduction (PMOR) of linear time-invariant dynamical systems. Our method aims at minimizing the $\mathcal{H}_\infty \otimes \mathcal{L}_\infty$ approximation error in the frequency and parameter domain by an optimization of the reduced order model (ROM) matrices. State-of-the-art PMOR methods often compute several nonparametric ROMs for different parameter samples, which are then combined to a single parametric ROM. However, these parametric ROMs can have a low accuracy between the utilized sample points. In contrast, our optimization-based PMOR method minimizes the approximation error across the entire parameter domain. Moreover, due to our flexible approach of optimizing the system matrices directly, we can enforce favorable features such as a port-Hamiltonian structure in our ROMs across the entire parameter domain. Our method is an extension of the recently developed SOBMOR-algorithm to parametric systems. We extend both the ROM parameterization and the adaptive sampling procedure to the parametric case. Several numerical examples demonstrate the effectiveness and high accuracy of our method in a comparison with other PMOR methods.

As a non-invasive optical imaging technique, optical coherence tomography (OCT) has proven promising for automatic fingerprint recognition system (AFRS) applications. Diverse approaches have been proposed for OCT-based fingerprint presentation attack detection (PAD). However, considering the complexity and variety of PA samples, it is extremely challenging to increase the generalization ability with the limited PA dataset. To solve the challenge, this paper presents a novel supervised learning-based PAD method, denoted as ISAPAD, which applies prior knowledge to guide network training and enhance the generalization ability. The proposed dual-branch architecture can not only learns global features from the OCT image, but also concentrate on layered structure feature which comes from the internal structure attention module (ISAM). The simple yet effective ISAM enables the proposed network to obtain layered segmentation features belonging only to Bonafide from noisy OCT volume data directly. Combined with effective training strategies and PAD score generation rules, ISAPAD obtains optimal PAD performance in limited training data. Domain generalization experiments and visualization analysis validate the effectiveness of the proposed method for OCT PAD.

We study the problem of estimating optical flow from event cameras. One important issue is how to build a high-quality event-flow dataset with accurate event values and flow labels. Previous datasets are created by either capturing real scenes by event cameras or synthesizing from images with pasted foreground objects. The former case can produce real event values but with calculated flow labels, which are sparse and inaccurate. The later case can generate dense flow labels but the interpolated events are prone to errors. In this work, we propose to render a physically correct event-flow dataset using computer graphics models. In particular, we first create indoor and outdoor 3D scenes by Blender with rich scene content variations. Second, diverse camera motions are included for the virtual capturing, producing images and accurate flow labels. Third, we render high-framerate videos between images for accurate events. The rendered dataset can adjust the density of events, based on which we further introduce an adaptive density module (ADM). Experiments show that our proposed dataset can facilitate event-flow learning, whereas previous approaches when trained on our dataset can improve their performances constantly by a relatively large margin. In addition, event-flow pipelines when equipped with our ADM can further improve performances.

Recent rapid developments in reinforcement learning algorithms have been giving us novel possibilities in many fields. However, due to their exploring property, we have to take the risk into consideration when we apply those algorithms to safety-critical problems especially in real environments. In this study, we deal with a safe exploration problem in reinforcement learning under the existence of disturbance. We define the safety during learning as satisfaction of the constraint conditions explicitly defined in terms of the state and propose a safe exploration method that uses partial prior knowledge of a controlled object and disturbance. The proposed method assures the satisfaction of the explicit state constraints with a pre-specified probability even if the controlled object is exposed to a stochastic disturbance following a normal distribution. As theoretical results, we introduce sufficient conditions to construct conservative inputs not containing an exploring aspect used in the proposed method and prove that the safety in the above explained sense is guaranteed with the proposed method. Furthermore, we illustrate the validity and effectiveness of the proposed method through numerical simulations of an inverted pendulum and a four-bar parallel link robot manipulator.

Underwater images are altered by the physical characteristics of the medium through which light rays pass before reaching the optical sensor. Scattering and wavelength-dependent absorption significantly modify the captured colors depending on the distance of observed elements to the image plane. In this paper, we aim to recover an image of the scene as if the water had no effect on light propagation. We introduce SUCRe, a new method that exploits the scene's 3D structure for underwater color restoration. By following points in multiple images and tracking their intensities at different distances to the sensor, we constrain the optimization of the parameters in an underwater image formation model and retrieve unattenuated pixel intensities. We conduct extensive quantitative and qualitative analyses of our approach in a variety of scenarios ranging from natural light to deep-sea environments using three underwater datasets acquired from real-world scenarios and one synthetic dataset. We also compare the performance of the proposed approach with that of a wide range of existing state-of-the-art methods. The results demonstrate a consistent benefit of exploiting multiple views across a spectrum of objective metrics. Our code is publicly available at //github.com/clementinboittiaux/sucre.

Currently, inter-organizational process collaboration (IOPC) has been widely used in the design and development of distributed systems that support business process execution. Blockchain-based IOPC can establish trusted data sharing among participants, attracting more and more attention. The core of such study is to translate the graphical model (e.g., BPMN) into program code called smart contract that can be executed in the blockchain environment. In this context, a proper smart contract plays a vital role in the correct implementation of block-chain-based IOPC. In fact, the quality of graphical model affects the smart con-tract generation. Problematic models (e.g., deadlock) will result in incorrect contracts (causing unexpected behaviours). To avoid this undesired implementation, this paper explores to generate smart contracts by using the verified formal model as input instead of graphical model. Specifically, we introduce a prototype framework that supports the automatic generation of smart contracts, providing an end-to-end solution from modeling, verification, translation to implementation. One of the cores of this framework is to provide a CSP#-based formalization for the BPMN collaboration model from the perspective of message interaction. This formalization provides precise execution semantics and model verification for graphical models, and a verified formal model for smart contract generation. Another novelty is that it introduces a syntax tree-based translation algorithm to directly map the formal model into a smart contract. The required formalism, verification and translation techniques are transparent to users without imposing additional burdens. Finally, a set of experiments shows the effectiveness of the framework.

When is heterogeneity in the composition of an autonomous robotic team beneficial and when is it detrimental? We investigate and answer this question in the context of a minimally viable model that examines the role of heterogeneous speeds in perimeter defense problems, where defenders share a total allocated speed budget. We consider two distinct problem settings and develop strategies based on dynamic programming and on local interaction rules. We present a theoretical analysis of both approaches and our results are extensively validated using simulations. Interestingly, our results demonstrate that the viability of heterogeneous teams depends on the amount of information available to the defenders. Moreover, our results suggest a universality property: across a wide range of problem parameters the optimal ratio of the speeds of the defenders remains nearly constant.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

Sufficient training data is normally required to train deeply learned models. However, the number of pedestrian images per ID in person re-identification (re-ID) datasets is usually limited, since manually annotations are required for multiple camera views. To produce more data for training deeply learned models, generative adversarial network (GAN) can be leveraged to generate samples for person re-ID. However, the samples generated by vanilla GAN usually do not have labels. So in this paper, we propose a virtual label called Multi-pseudo Regularized Label (MpRL) and assign it to the generated images. With MpRL, the generated samples will be used as supplementary of real training data to train a deep model in a semi-supervised learning fashion. Considering data bias between generated and real samples, MpRL utilizes different contributions from predefined training classes. The contribution-based virtual labels are automatically assigned to generated samples to reduce ambiguous prediction in training. Meanwhile, MpRL only relies on predefined training classes without using extra classes. Furthermore, to reduce over-fitting, a regularized manner is applied to MpRL to regularize the learning process. To verify the effectiveness of MpRL, two state-of-the-art convolutional neural networks (CNNs) are adopted in our experiments. Experiments demonstrate that by assigning MpRL to generated samples, we can further improve the person re-ID performance on three datasets i.e., Market-1501, DukeMTMCreID, and CUHK03. The proposed method obtains +6.29%, +6.30% and +5.58% improvements in rank-1 accuracy over a strong CNN baseline respectively, and outperforms the state-of-the- art methods.

北京阿比特科技有限公司