亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Federated learning (FL) is a promising approach in distributed learning keeping privacy. However, during the training pipeline of FL, slow or incapable clients (i.e., stragglers) slow down the total training time and degrade performance. System heterogeneity, including heterogeneous computing and network bandwidth, has been addressed to mitigate the impact of stragglers. Previous studies split models to tackle the issue, but with less degree-of-freedom in terms of model architecture. We propose nested federated learning (NeFL), a generalized framework that efficiently divides a model into submodels using both depthwise and widthwise scaling. NeFL is implemented by interpreting models as solving ordinary differential equations (ODEs) with adaptive step sizes. To address the inconsistency that arises when training multiple submodels with different architecture, we decouple a few parameters. NeFL enables resource-constrained clients to effectively join the FL pipeline and the model to be trained with a larger amount of data. Through a series of experiments, we demonstrate that NeFL leads to significant gains, especially for the worst-case submodel (e.g., 8.33 improvement on CIFAR-10). Furthermore, we demonstrate NeFL aligns with recent studies in FL.

相關內容

Self-supervised learning (SSL) is an increasingly popular paradigm for representation learning. Recent methods can be classified as sample-contrastive, dimension-contrastive, or asymmetric network-based, with each family having its own approach to avoiding informational collapse. While dimension-contrastive methods converge to similar solutions as sample-contrastive methods, it can be empirically shown that some methods require more epochs of training to converge. Motivated by closing this divide, we present the objective function FroSSL which is both sample- and dimension-contrastive up to embedding normalization. FroSSL works by minimizing covariance Frobenius norms for avoiding collapse and minimizing mean-squared error for augmentation invariance. We show that FroSSL converges more quickly than a variety of other SSL methods and provide theoretical and empirical support that this faster convergence is due to how FroSSL affects the eigenvalues of the embedding covariance matrices. We also show that FroSSL learns competitive representations on linear probe evaluation when used to train a ResNet18 on the CIFAR-10, CIFAR-100, STL-10, and ImageNet datasets.

Multi-task learning (MTL) aims to empower a model to tackle multiple tasks simultaneously. A recent development known as task arithmetic has revealed that several models, each fine-tuned for distinct tasks, can be directly merged into a single model to execute MTL without necessitating a retraining process using the initial training data. Nevertheless, this direct addition of models often leads to a significant deterioration in the overall performance of the merged model. This decline occurs due to potential conflicts and intricate correlations among the multiple tasks. Consequently, the challenge emerges of how to merge pre-trained models more effectively without using their original training data. This paper introduces an innovative technique called Adaptive Model Merging (AdaMerging). This approach aims to autonomously learn the coefficients for model merging, either in a task-wise or layer-wise manner, without relying on the original training data. Specifically, our AdaMerging method operates as an automatic, unsupervised task arithmetic scheme. It leverages entropy minimization on unlabeled test samples from the multi-task setup as a surrogate objective function to iteratively refine the merging coefficients of the multiple models. Our experimental findings across eight tasks demonstrate the efficacy of the AdaMerging scheme we put forth. Compared to the current state-of-the-art task arithmetic merging scheme, AdaMerging showcases a remarkable 11\% improvement in performance. Notably, AdaMerging also exhibits superior generalization capabilities when applied to unseen downstream tasks. Furthermore, it displays a significantly enhanced robustness to data distribution shifts that may occur during the testing phase.

Reinforcement learning has gained significant traction in the field of robotic navigation. However, a persistent challenge is its sample inefficiency, primarily due to the inherent complexities of encouraging exploration. During training, the mobile agent must explore as much as possible to efficiently learn optimal behaviors. We introduce Ada-NAV, a novel adaptive trajectory length scheme designed to enhance the training sample efficiency of reinforcement learning algorithms in robotic navigation tasks. Unlike traditional approaches that treat trajectory length as a fixed hyperparameter, Ada-NAV dynamically adjusts it based on the entropy of the underlying navigation policy. We empirically validate the efficacy of AdaNAV using two popular policy gradient methods: REINFORCE and Proximal Policy Optimization (PPO). We demonstrate through both simulated and real-world robotic experiments that Ada-NAV outperforms conventional methods that employ constant or randomly sampled trajectory lengths. Specifically, for a fixed sample budget, Ada-NAV achieves an 18% increase in navigation success rate, a 20-38% reduction in navigation path length, and a 9.32% decrease in elevation costs. Furthermore, we showcase the versatility of Ada-NAV by integrating it with the Clearpath Husky robot, illustrating its applicability in complex, outdoor environments.

Federated learning (FL) is an emerging machine learning (ML) paradigm that enables heterogeneous edge devices to collaboratively train ML models without revealing their raw data to a logically centralized server. However, beyond the heterogeneous device capacity, FL participants often exhibit differences in their data distributions, which are not independent and identically distributed (Non-IID). Many existing works present point solutions to address issues like slow convergence, low final accuracy, and bias in FL, all stemming from client heterogeneity. In this paper, we explore an additional layer of complexity to mitigate such heterogeneity by grouping clients with statistically similar data distributions (cohorts). We propose Auxo to gradually identify such cohorts in large-scale, low-availability, and resource-constrained FL populations. Auxo then adaptively determines how to train cohort-specific models in order to achieve better model performance and ensure resource efficiency. Our extensive evaluations show that, by identifying cohorts with smaller heterogeneity and performing efficient cohort-based training, Auxo boosts various existing FL solutions in terms of final accuracy (2.1% - 8.2%), convergence time (up to 2.2x), and model bias (4.8% - 53.8%).

Contrastive learning (CL) pre-trains general-purpose encoders using an unlabeled pre-training dataset, which consists of images or image-text pairs. CL is vulnerable to data poisoning based backdoor attacks (DPBAs), in which an attacker injects poisoned inputs into the pre-training dataset so the encoder is backdoored. However, existing DPBAs achieve limited effectiveness. In this work, we take the first step to analyze the limitations of existing attacks and propose new DPBAs called CorruptEncoder to CL. CorruptEncoder uses a theory-guided method to create optimal poisoned inputs to maximize attack effectiveness. Our experiments show that CorruptEncoder substantially outperforms existing DPBAs. In particular, CorruptEncoder is the first DPBA that achieves more than 90% attack success rates with only a few (3) reference images and a small poisoning ratio (0.5%). Moreover, we also propose a defense, called localized cropping, to defend against DPBAs. Our results show that our defense can reduce the effectiveness of DPBAs, but it sacrifices the utility of the encoder, highlighting the need for new defenses.

We introduce a library called Push that takes a probabilistic programming approach to Bayesian deep learning (BDL). This library enables concurrent execution of BDL inference algorithms on multi-GPU hardware for neural network (NN) models. To accomplish this, Push introduces an abstraction that represents an input NN as a particle. Push enables easy creation of particles so that an input NN can be replicated and particles can communicate asynchronously so that a variety of parameter updates can be expressed, including common BDL algorithms. Our hope is that Push lowers the barrier to experimenting with BDL by streamlining the scaling of particles across GPUs. We evaluate the scaling behavior of particles on single-node multi-GPU devices on vision and scientific machine learning (SciML) tasks.

Deep learning has been the mainstream technique in natural language processing (NLP) area. However, the techniques require many labeled data and are less generalizable across domains. Meta-learning is an arising field in machine learning studying approaches to learn better learning algorithms. Approaches aim at improving algorithms in various aspects, including data efficiency and generalizability. Efficacy of approaches has been shown in many NLP tasks, but there is no systematic survey of these approaches in NLP, which hinders more researchers from joining the field. Our goal with this survey paper is to offer researchers pointers to relevant meta-learning works in NLP and attract more attention from the NLP community to drive future innovation. This paper first introduces the general concepts of meta-learning and the common approaches. Then we summarize task construction settings and application of meta-learning for various NLP problems and review the development of meta-learning in NLP community.

Federated learning (FL) has been developed as a promising framework to leverage the resources of edge devices, enhance customers' privacy, comply with regulations, and reduce development costs. Although many methods and applications have been developed for FL, several critical challenges for practical FL systems remain unaddressed. This paper provides an outlook on FL development, categorized into five emerging directions of FL, namely algorithm foundation, personalization, hardware and security constraints, lifelong learning, and nonstandard data. Our unique perspectives are backed by practical observations from large-scale federated systems for edge devices.

Graph-based semi-supervised learning (SSL) is an important learning problem where the goal is to assign labels to initially unlabeled nodes in a graph. Graph Convolutional Networks (GCNs) have recently been shown to be effective for graph-based SSL problems. GCNs inherently assume existence of pairwise relationships in the graph-structured data. However, in many real-world problems, relationships go beyond pairwise connections and hence are more complex. Hypergraphs provide a natural modeling tool to capture such complex relationships. In this work, we explore the use of GCNs for hypergraph-based SSL. In particular, we propose HyperGCN, an SSL method which uses a layer-wise propagation rule for convolutional neural networks operating directly on hypergraphs. To the best of our knowledge, this is the first principled adaptation of GCNs to hypergraphs. HyperGCN is able to encode both the hypergraph structure and hypernode features in an effective manner. Through detailed experimentation, we demonstrate HyperGCN's effectiveness at hypergraph-based SSL.

We study the problem of learning to reason in large scale knowledge graphs (KGs). More specifically, we describe a novel reinforcement learning framework for learning multi-hop relational paths: we use a policy-based agent with continuous states based on knowledge graph embeddings, which reasons in a KG vector space by sampling the most promising relation to extend its path. In contrast to prior work, our approach includes a reward function that takes the accuracy, diversity, and efficiency into consideration. Experimentally, we show that our proposed method outperforms a path-ranking based algorithm and knowledge graph embedding methods on Freebase and Never-Ending Language Learning datasets.

北京阿比特科技有限公司