亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The performance and safety of autonomous vehicles (AVs) deteriorates under adverse environments and adversarial actors. The investment in multi-sensor, multi-agent (MSMA) AVs is meant to promote improved efficiency of travel and mitigate safety risks. Unfortunately, minimal investment has been made to develop security-aware MSMA sensor fusion pipelines leaving them vulnerable to adversaries. To advance security analysis of AVs, we develop the Multi-Agent Security Testbed, MAST, in the Robot Operating System (ROS2). Our framework is scalable for general AV scenarios and is integrated with recent multi-agent datasets. We construct the first bridge between AVstack and ROS and develop automated AV pipeline builds to enable rapid AV prototyping. We tackle the challenge of deploying variable numbers of agent/adversary nodes at launch-time with dynamic topic remapping. Using this testbed, we motivate the need for security-aware AV architectures by exposing the vulnerability of centralized multi-agent fusion pipelines to (un)coordinated adversary models in case studies and Monte Carlo analysis.

相關內容

The safety alignment of Large Language Models (LLMs) is vulnerable to both manual and automated jailbreak attacks, which adversarially trigger LLMs to output harmful content. However, current methods for jailbreaking LLMs, which nest entire harmful prompts, are not effective at concealing malicious intent and can be easily identified and rejected by well-aligned LLMs. This paper discovers that decomposing a malicious prompt into separated sub-prompts can effectively obscure its underlying malicious intent by presenting it in a fragmented, less detectable form, thereby addressing these limitations. We introduce an automatic prompt \textbf{D}ecomposition and \textbf{R}econstruction framework for jailbreak \textbf{Attack} (DrAttack). DrAttack includes three key components: (a) `Decomposition' of the original prompt into sub-prompts, (b) `Reconstruction' of these sub-prompts implicitly by in-context learning with semantically similar but harmless reassembling demo, and (c) a `Synonym Search' of sub-prompts, aiming to find sub-prompts' synonyms that maintain the original intent while jailbreaking LLMs. An extensive empirical study across multiple open-source and closed-source LLMs demonstrates that, with a significantly reduced number of queries, DrAttack obtains a substantial gain of success rate over prior SOTA prompt-only attackers. Notably, the success rate of 78.0\% on GPT-4 with merely 15 queries surpassed previous art by 33.1\%. The project is available at //github.com/xirui-li/DrAttack.

The increasing demand for automatic high-level image understanding, particularly in detecting abstract concepts (AC) within images, underscores the necessity for innovative and more interpretable approaches. These approaches need to harmonize traditional deep vision methods with the nuanced, context-dependent knowledge humans employ to interpret images at intricate semantic levels. In this work, we leverage situated perceptual knowledge of cultural images to enhance performance and interpretability in AC image classification. We automatically extract perceptual semantic units from images, which we then model and integrate into the ARTstract Knowledge Graph (AKG). This resource captures situated perceptual semantics gleaned from over 14,000 cultural images labeled with ACs. Additionally, we enhance the AKG with high-level linguistic frames. We compute KG embeddings and experiment with relative representations and hybrid approaches that fuse these embeddings with visual transformer embeddings. Finally, for interpretability, we conduct posthoc qualitative analyses by examining model similarities with training instances. Our results show that our hybrid KGE-ViT methods outperform existing techniques in AC image classification. The posthoc interpretability analyses reveal the visual transformer's proficiency in capturing pixel-level visual attributes, contrasting with our method's efficacy in representing more abstract and semantic scene elements. We demonstrate the synergy and complementarity between KGE embeddings' situated perceptual knowledge and deep visual model's sensory-perceptual understanding for AC image classification. This work suggests a strong potential of neuro-symbolic methods for knowledge integration and robust image representation for use in downstream intricate visual comprehension tasks. All the materials and code are available online.

The assessment of safety performance plays a pivotal role in the development and deployment of connected and automated vehicles (CAVs). A common approach involves designing testing scenarios based on prior knowledge of CAVs (e.g., surrogate models), conducting tests in these scenarios, and subsequently evaluating CAVs' safety performances. However, substantial differences between CAVs and the prior knowledge can significantly diminish the evaluation efficiency. In response to this issue, existing studies predominantly concentrate on the adaptive design of testing scenarios during the CAV testing process. Yet, these methods have limitations in their applicability to high-dimensional scenarios. To overcome this challenge, we develop an adaptive testing environment that bolsters evaluation robustness by incorporating multiple surrogate models and optimizing the combination coefficients of these surrogate models to enhance evaluation efficiency. We formulate the optimization problem as a regression task utilizing quadratic programming. To efficiently obtain the regression target via reinforcement learning, we propose the dense reinforcement learning method and devise a new adaptive policy with high sample efficiency. Essentially, our approach centers on learning the values of critical scenes displaying substantial surrogate-to-real gaps. The effectiveness of our method is validated in high-dimensional overtaking scenarios, demonstrating that our approach achieves notable evaluation efficiency.

In autonomous vehicle (AV) technology, the ability to accurately predict the movements of surrounding vehicles is paramount for ensuring safety and operational efficiency. Incorporating human decision-making insights enables AVs to more effectively anticipate the potential actions of other vehicles, significantly improving prediction accuracy and responsiveness in dynamic environments. This paper introduces the Human-Like Trajectory Prediction (HLTP) model, which adopts a teacher-student knowledge distillation framework inspired by human cognitive processes. The HLTP model incorporates a sophisticated teacher-student knowledge distillation framework. The "teacher" model, equipped with an adaptive visual sector, mimics the visual processing of the human brain, particularly the functions of the occipital and temporal lobes. The "student" model focuses on real-time interaction and decision-making, drawing parallels to prefrontal and parietal cortex functions. This approach allows for dynamic adaptation to changing driving scenarios, capturing essential perceptual cues for accurate prediction. Evaluated using the Macao Connected and Autonomous Driving (MoCAD) dataset, along with the NGSIM and HighD benchmarks, HLTP demonstrates superior performance compared to existing models, particularly in challenging environments with incomplete data. The project page is available at Github.

Adapting an automatic speech recognition (ASR) system to unseen noise environments is crucial. Integrating adapters into neural networks has emerged as a potent technique for transfer learning. This study thoroughly investigates adapter-based ASR adaptation in noisy environments. We conducted experiments using the CHiME--4 dataset. The results show that inserting the adapter in the shallow layer yields superior effectiveness, and there is no significant difference between adapting solely within the shallow layer and adapting across all layers. The simulated data helps the system to improve its performance under real noise conditions. Nonetheless, when the amount of data is the same, the real data is more effective than the simulated data. Multi-condition training is still useful for adapter training. Furthermore, integrating adapters into speech enhancement-based ASR systems yields substantial improvements.

The F1TENTH autonomous racing platform, consisting of 1:10 scale RC cars, has evolved into a leading research platform. The many publications and real-world competitions span many domains, from classical path planning to novel learning-based algorithms. Consequently, the field is wide and disjointed, hindering direct comparison of methods and making it difficult to assess the state-of-the-art. Therefore, we aim to unify the field by surveying current approaches, describing common methods and providing benchmark results to facilitate clear comparison and establish a baseline for future work. We survey current work in F1TENTH racing in the classical and learning categories, explaining the different solution approaches. We describe particle filter localisation, trajectory optimisation and tracking, model predictive contouring control (MPCC), follow-the-gap and end-to-end reinforcement learning. We provide an open-source evaluation of benchmark methods and investigate overlooked factors of control frequency and localisation accuracy for classical methods and reward signal and training map for learning methods. The evaluation shows that the optimisation and tracking method achieves the fastest lap times, followed by the MPCC planner. Finally, our work identifies and outlines the relevant research aspects to help motivate future work in the F1TENTH domain.

The advent of autonomous vehicles has heralded a transformative era in transportation, reshaping the landscape of mobility through cutting-edge technologies. Central to this evolution is the integration of Artificial Intelligence (AI) and learning algorithms, propelling vehicles into realms of unprecedented autonomy. This paper provides a comprehensive exploration of the evolutionary trajectory of AI within autonomous vehicles, tracing the journey from foundational principles to the most recent advancements. Commencing with a current landscape overview, the paper delves into the fundamental role of AI in shaping the autonomous decision-making capabilities of vehicles. It elucidates the steps involved in the AI-powered development life cycle in vehicles, addressing ethical considerations and bias in AI-driven software development for autonomous vehicles. The study presents statistical insights into the usage and types of AI/learning algorithms over the years, showcasing the evolving research landscape within the automotive industry. Furthermore, the paper highlights the pivotal role of parameters in refining algorithms for both trucks and cars, facilitating vehicles to adapt, learn, and improve performance over time. It concludes by outlining different levels of autonomy, elucidating the nuanced usage of AI and learning algorithms, and automating key tasks at each level. Additionally, the document discusses the variation in software package sizes across different autonomy levels

With recent advances in artificial intelligence (AI) and robotics, unmanned vehicle swarms have received great attention from both academia and industry due to their potential to provide services that are difficult and dangerous to perform by humans. However, learning and coordinating movements and actions for a large number of unmanned vehicles in complex and dynamic environments introduce significant challenges to conventional AI methods. Generative AI (GAI), with its capabilities in complex data feature extraction, transformation, and enhancement, offers great potential in solving these challenges of unmanned vehicle swarms. For that, this paper aims to provide a comprehensive survey on applications, challenges, and opportunities of GAI in unmanned vehicle swarms. Specifically, we first present an overview of unmanned vehicles and unmanned vehicle swarms as well as their use cases and existing issues. Then, an in-depth background of various GAI techniques together with their capabilities in enhancing unmanned vehicle swarms are provided. After that, we present a comprehensive review on the applications and challenges of GAI in unmanned vehicle swarms with various insights and discussions. Finally, we highlight open issues of GAI in unmanned vehicle swarms and discuss potential research directions.

Cooperative perception can significantly improve the perception performance of autonomous vehicles beyond the limited perception ability of individual vehicles by exchanging information with neighbor agents through V2X communication. However, most existing work assume ideal communication among agents, ignoring the significant and common \textit{interruption issues} caused by imperfect V2X communication, where cooperation agents can not receive cooperative messages successfully and thus fail to achieve cooperative perception, leading to safety risks. To fully reap the benefits of cooperative perception in practice, we propose V2X communication INterruption-aware COoperative Perception (V2X-INCOP), a cooperative perception system robust to communication interruption for V2X communication-aided autonomous driving, which leverages historical cooperation information to recover missing information due to the interruptions and alleviate the impact of the interruption issue. To achieve comprehensive recovery, we design a communication-adaptive multi-scale spatial-temporal prediction model to extract multi-scale spatial-temporal features based on V2X communication conditions and capture the most significant information for the prediction of the missing information. To further improve recovery performance, we adopt a knowledge distillation framework to give explicit and direct supervision to the prediction model and a curriculum learning strategy to stabilize the training of the model. Experiments on three public cooperative perception datasets demonstrate that the proposed method is effective in alleviating the impacts of communication interruption on cooperative perception.

Large language models (LLMs) have strong capabilities in solving diverse natural language processing tasks. However, the safety and security issues of LLM systems have become the major obstacle to their widespread application. Many studies have extensively investigated risks in LLM systems and developed the corresponding mitigation strategies. Leading-edge enterprises such as OpenAI, Google, Meta, and Anthropic have also made lots of efforts on responsible LLMs. Therefore, there is a growing need to organize the existing studies and establish comprehensive taxonomies for the community. In this paper, we delve into four essential modules of an LLM system, including an input module for receiving prompts, a language model trained on extensive corpora, a toolchain module for development and deployment, and an output module for exporting LLM-generated content. Based on this, we propose a comprehensive taxonomy, which systematically analyzes potential risks associated with each module of an LLM system and discusses the corresponding mitigation strategies. Furthermore, we review prevalent benchmarks, aiming to facilitate the risk assessment of LLM systems. We hope that this paper can help LLM participants embrace a systematic perspective to build their responsible LLM systems.

北京阿比特科技有限公司