亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We propose the first Large Reconstruction Model (LRM) that predicts the 3D model of an object from a single input image within just 5 seconds. In contrast to many previous methods that are trained on small-scale datasets such as ShapeNet in a category-specific fashion, LRM adopts a highly scalable transformer-based architecture with 500 million learnable parameters to directly predict a neural radiance field (NeRF) from the input image. We train our model in an end-to-end manner on massive multi-view data containing around 1 million objects, including both synthetic renderings from Objaverse and real captures from MVImgNet. This combination of a high-capacity model and large-scale training data empowers our model to be highly generalizable and produce high-quality 3D reconstructions from various testing inputs including real-world in-the-wild captures and images from generative models. Video demos and interactable 3D meshes can be found on this website: //yiconghong.me/LRM/.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 求逆 · MoDELS · 稀疏 · Performer ·
2023 年 12 月 28 日

We present iFusion, a novel 3D object reconstruction framework that requires only two views with unknown camera poses. While single-view reconstruction yields visually appealing results, it can deviate significantly from the actual object, especially on unseen sides. Additional views improve reconstruction fidelity but necessitate known camera poses. However, assuming the availability of pose may be unrealistic, and existing pose estimators fail in sparse view scenarios. To address this, we harness a pre-trained novel view synthesis diffusion model, which embeds implicit knowledge about the geometry and appearance of diverse objects. Our strategy unfolds in three steps: (1) We invert the diffusion model for camera pose estimation instead of synthesizing novel views. (2) The diffusion model is fine-tuned using provided views and estimated poses, turned into a novel view synthesizer tailored for the target object. (3) Leveraging registered views and the fine-tuned diffusion model, we reconstruct the 3D object. Experiments demonstrate strong performance in both pose estimation and novel view synthesis. Moreover, iFusion seamlessly integrates with various reconstruction methods and enhances them.

We present a comprehensive solution to learn and improve text-to-image models from human preference feedback. To begin with, we build ImageReward -- the first general-purpose text-to-image human preference reward model -- to effectively encode human preferences. Its training is based on our systematic annotation pipeline including rating and ranking, which collects 137k expert comparisons to date. In human evaluation, ImageReward outperforms existing scoring models and metrics, making it a promising automatic metric for evaluating text-to-image synthesis. On top of it, we propose Reward Feedback Learning (ReFL), a direct tuning algorithm to optimize diffusion models against a scorer. Both automatic and human evaluation support ReFL's advantages over compared methods. All code and datasets are provided at \url{//github.com/THUDM/ImageReward}.

We present MobileVLM, a competent multimodal vision language model (MMVLM) targeted to run on mobile devices. It is an amalgamation of a myriad of architectural designs and techniques that are mobile-oriented, which comprises a set of language models at the scale of 1.4B and 2.7B parameters, trained from scratch, a multimodal vision model that is pre-trained in the CLIP fashion, cross-modality interaction via an efficient projector. We evaluate MobileVLM on several typical VLM benchmarks. Our models demonstrate on par performance compared with a few much larger models. More importantly, we measure the inference speed on both a Qualcomm Snapdragon 888 CPU and an NVIDIA Jeston Orin GPU, and we obtain state-of-the-art performance of 21.5 tokens and 65.3 tokens per second, respectively. Our code will be made available at: //github.com/Meituan-AutoML/MobileVLM.

Supplying data augmentation to conversational question answering (CQA) can effectively improve model performance. However, there is less improvement from single-turn datasets in CQA due to the distribution gap between single-turn and multi-turn datasets. On the other hand, while numerous single-turn datasets are available, we have not utilized them effectively. To solve this problem, we propose a novel method to convert single-turn datasets to multi-turn datasets. The proposed method consists of three parts, namely, a QA pair Generator, a QA pair Reassembler, and a question Rewriter. Given a sample consisting of context and single-turn QA pairs, the Generator obtains candidate QA pairs and a knowledge graph based on the context. The Reassembler utilizes the knowledge graph to get sequential QA pairs, and the Rewriter rewrites questions from a conversational perspective to obtain a multi-turn dataset S2M. Our experiments show that our method can synthesize effective training resources for CQA. Notably, S2M ranks 1st place on the QuAC leaderboard at the time of submission (Aug 24th, 2022).

We introduce CoTracker, a transformer-based model that tracks dense points in a frame jointly across a video sequence. This differs from most existing state-of-the-art approaches that track points independently, ignoring their correlation. We show that joint tracking results in a significantly higher tracking accuracy and robustness. We also provide several technical innovations, including the concept of virtual tracks, which allows CoTracker to track 70k points jointly and simultaneously. Furthermore, CoTracker operates causally on short windows (hence, it is suitable for online tasks), but is trained by unrolling the windows across longer video sequences, which enables and significantly improves long-term tracking. We demonstrate qualitatively impressive tracking results, where points can be tracked for a long time even when they are occluded or leave the field of view. Quantitatively, CoTracker outperforms all recent trackers on standard benchmarks, often by a substantial margin.

Powered by large-scale text-to-image generation models, text-to-3D avatar generation has made promising progress. However, most methods fail to produce photorealistic results, limited by imprecise geometry and low-quality appearance. Towards more practical avatar generation, we present SEEAvatar, a method for generating photorealistic 3D avatars from text with SElf-Evolving constraints for decoupled geometry and appearance. For geometry, we propose to constrain the optimized avatar in a decent global shape with a template avatar. The template avatar is initialized with human prior and can be updated by the optimized avatar periodically as an evolving template, which enables more flexible shape generation. Besides, the geometry is also constrained by the static human prior in local parts like face and hands to maintain the delicate structures. For appearance generation, we use diffusion model enhanced by prompt engineering to guide a physically based rendering pipeline to generate realistic textures. The lightness constraint is applied on the albedo texture to suppress incorrect lighting effect. Experiments show that our method outperforms previous methods on both global and local geometry and appearance quality by a large margin. Since our method can produce high-quality meshes and textures, such assets can be directly applied in classic graphics pipeline for realistic rendering under any lighting condition. Project page at: //yoxu515.github.io/SEEAvatar/.

Large Language Models (LLMs) have showcased impressive capabilities in handling straightforward programming tasks. However, their performance tends to falter when confronted with more challenging programming problems. We observe that conventional models often generate solutions as monolithic code blocks, restricting their effectiveness in tackling intricate questions. To overcome this limitation, we present Modular-of-Thought Coder (MoTCoder). We introduce a pioneering framework for MoT instruction tuning, designed to promote the decomposition of tasks into logical sub-tasks and sub-modules. Our investigations reveal that, through the cultivation and utilization of sub-modules, MoTCoder significantly improves both the modularity and correctness of the generated solutions, leading to substantial relative pass@1 improvements of 12.9% on APPS and 9.43% on CodeContests. Our codes are available at //github.com/dvlab-research/MoTCoder.

The objective of Active Learning is to strategically label a subset of the dataset to maximize performance within a predetermined labeling budget. In this study, we harness features acquired through self-supervised learning. We introduce a straightforward yet potent metric, Cluster Distance Difference, to identify diverse data. Subsequently, we introduce a novel framework, Balancing Active Learning (BAL), which constructs adaptive sub-pools to balance diverse and uncertain data. Our approach outperforms all established active learning methods on widely recognized benchmarks by 1.20%. Moreover, we assess the efficacy of our proposed framework under extended settings, encompassing both larger and smaller labeling budgets. Experimental results demonstrate that, when labeling 80% of the samples, the performance of the current SOTA method declines by 0.74%, whereas our proposed BAL achieves performance comparable to the full dataset. Codes are available at //github.com/JulietLJY/BAL.

Unsupervised depth completion methods are trained by minimizing sparse depth and image reconstruction error. Block artifacts from resampling, intensity saturation, and occlusions are amongst the many undesirable by-products of common data augmentation schemes that affect image reconstruction quality, and thus the training signal. Hence, typical augmentations on images viewed as essential to training pipelines in other vision tasks have seen limited use beyond small image intensity changes and flipping. The sparse depth modality have seen even less as intensity transformations alter the scale of the 3D scene, and geometric transformations may decimate the sparse points during resampling. We propose a method that unlocks a wide range of previously-infeasible geometric augmentations for unsupervised depth completion. This is achieved by reversing, or ``undo"-ing, geometric transformations to the coordinates of the output depth, warping the depth map back to the original reference frame. This enables computing the reconstruction losses using the original images and sparse depth maps, eliminating the pitfalls of naive loss computation on the augmented inputs. This simple yet effective strategy allows us to scale up augmentations to boost performance. We demonstrate our method on indoor (VOID) and outdoor (KITTI) datasets where we improve upon three existing methods by an average of 11.75% across both datasets.

Diffusion models (DMs) have shown great potential for high-quality image synthesis. However, when it comes to producing images with complex scenes, how to properly describe both image global structures and object details remains a challenging task. In this paper, we present Frido, a Feature Pyramid Diffusion model performing a multi-scale coarse-to-fine denoising process for image synthesis. Our model decomposes an input image into scale-dependent vector quantized features, followed by a coarse-to-fine gating for producing image output. During the above multi-scale representation learning stage, additional input conditions like text, scene graph, or image layout can be further exploited. Thus, Frido can be also applied for conditional or cross-modality image synthesis. We conduct extensive experiments over various unconditioned and conditional image generation tasks, ranging from text-to-image synthesis, layout-to-image, scene-graph-to-image, to label-to-image. More specifically, we achieved state-of-the-art FID scores on five benchmarks, namely layout-to-image on COCO and OpenImages, scene-graph-to-image on COCO and Visual Genome, and label-to-image on COCO. Code is available at //github.com/davidhalladay/Frido.

北京阿比特科技有限公司