亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

An adjacency-crossing graph is a graph that can be drawn such that every two edges that cross the same edge share a common endpoint. We show that the number of edges in an $n$-vertex adjacency-crossing graph is at most $5n-10$. If we require the edges to be drawn as straight-line segments, then this upper bound becomes $5n-11$. Both of these bounds are tight. The former result also follows from a very recent and independent work of Cheong et al.\cite{cheong2023weakly} who showed that the maximum size of weakly and strongly fan-planar graphs coincide. By combining this result with the bound of Kaufmann and Ueckerdt\cite{KU22} on the size of strongly fan-planar graphs and results of Brandenburg\cite{Br20} by which the maximum size of adjacency-crossing graphs equals the maximum size of fan-crossing graphs which in turn equals the maximum size of weakly fan-planar graphs, one obtains the same bound on the size of adjacency-crossing graphs. However, the proof presented here is different, simpler and direct.

相關內容

A simple graph on $n$ vertices may contain a lot of maximum cliques. But how many can it potentially contain? We will show that the maximum number of maximum cliques is taken over so-called cliqueful graphs, more specifically, later we will show that it is taken over saturated composite cliqueful graphs, if $n \ge 15$. Using this we will show that the graph that contains $3^{\lfloor n/3 \rfloor}c$ maxcliques has the most number of maxcliques on $n$ vertices, where $c\in\{1,\frac{4}{3},2\}$, depending on $n \text{ mod } 3$.

Next Point-of-Interest (POI) recommendation is a critical task in location-based services that aim to provide personalized suggestions for the user's next destination. Previous works on POI recommendation have laid focused on modeling the user's spatial preference. However, existing works that leverage spatial information are only based on the aggregation of users' previous visited positions, which discourages the model from recommending POIs in novel areas. This trait of position-based methods will harm the model's performance in many situations. Additionally, incorporating sequential information into the user's spatial preference remains a challenge. In this paper, we propose Diff-POI: a Diffusion-based model that samples the user's spatial preference for the next POI recommendation. Inspired by the wide application of diffusion algorithm in sampling from distributions, Diff-POI encodes the user's visiting sequence and spatial character with two tailor-designed graph encoding modules, followed by a diffusion-based sampling strategy to explore the user's spatial visiting trends. We leverage the diffusion process and its reversed form to sample from the posterior distribution and optimized the corresponding score function. We design a joint training and inference framework to optimize and evaluate the proposed Diff-POI. Extensive experiments on four real-world POI recommendation datasets demonstrate the superiority of our Diff-POI over state-of-the-art baseline methods. Further ablation and parameter studies on Diff-POI reveal the functionality and effectiveness of the proposed diffusion-based sampling strategy for addressing the limitations of existing methods.

Recently efforts have been made by social media platforms as well as researchers to detect hateful or toxic language using large language models. However, none of these works aim to use explanation, additional context and victim community information in the detection process. We utilise different prompt variation, input information and evaluate large language models in zero shot setting (without adding any in-context examples). We select three large language models (GPT-3.5, text-davinci and Flan-T5) and three datasets - HateXplain, implicit hate and ToxicSpans. We find that on average including the target information in the pipeline improves the model performance substantially (~20-30%) over the baseline across the datasets. There is also a considerable effect of adding the rationales/explanations into the pipeline (~10-20%) over the baseline across the datasets. In addition, we further provide a typology of the error cases where these large language models fail to (i) classify and (ii) explain the reason for the decisions they take. Such vulnerable points automatically constitute 'jailbreak' prompts for these models and industry scale safeguard techniques need to be developed to make the models robust against such prompts.

Self-supervised models have had great success in learning speech representations that can generalize to various downstream tasks. However, most self-supervised models require a large amount of compute and multiple GPUs to train, significantly hampering the development of self-supervised learning. In an attempt to reduce the computation of training, we revisit the training of HuBERT, a highly successful self-supervised model. We improve and simplify several key components, including the loss function, input representation, and training in multiple stages. Our model, MelHuBERT, is able to achieve favorable performance on phone recognition, speaker identification, and automatic speech recognition against HuBERT, while saving 31.2% of the pre-training time, or equivalently 33.5% MACs per one second speech. The code and pre-trained models are available in //github.com/nervjack2/MelHuBERT.

Causal representation learning algorithms discover lower-dimensional representations of data that admit a decipherable interpretation of cause and effect; as achieving such interpretable representations is challenging, many causal learning algorithms utilize elements indicating prior information, such as (linear) structural causal models, interventional data, or weak supervision. Unfortunately, in exploratory causal representation learning, such elements and prior information may not be available or warranted. Alternatively, scientific datasets often have multiple modalities or physics-based constraints, and the use of such scientific, multimodal data has been shown to improve disentanglement in fully unsupervised settings. Consequently, we introduce a causal representation learning algorithm (causalPIMA) that can use multimodal data and known physics to discover important features with causal relationships. Our innovative algorithm utilizes a new differentiable parametrization to learn a directed acyclic graph (DAG) together with a latent space of a variational autoencoder in an end-to-end differentiable framework via a single, tractable evidence lower bound loss function. We place a Gaussian mixture prior on the latent space and identify each of the mixtures with an outcome of the DAG nodes; this novel identification enables feature discovery with causal relationships. Tested against a synthetic and a scientific dataset, our results demonstrate the capability of learning an interpretable causal structure while simultaneously discovering key features in a fully unsupervised setting.

Since their initial introduction, score-based diffusion models (SDMs) have been successfully applied to solve a variety of linear inverse problems in finite-dimensional vector spaces due to their ability to efficiently approximate the posterior distribution. However, using SDMs for inverse problems in infinite-dimensional function spaces has only been addressed recently, primarily through methods that learn the unconditional score. While this approach is advantageous for some inverse problems, it is mostly heuristic and involves numerous computationally costly forward operator evaluations during posterior sampling. To address these limitations, we propose a theoretically grounded method for sampling from the posterior of infinite-dimensional Bayesian linear inverse problems based on amortized conditional SDMs. In particular, we prove that one of the most successful approaches for estimating the conditional score in finite dimensions - the conditional denoising estimator - can also be applied in infinite dimensions. A significant part of our analysis is dedicated to demonstrating that extending infinite-dimensional SDMs to the conditional setting requires careful consideration, as the conditional score typically blows up for small times, contrarily to the unconditional score. We conclude by presenting stylized and large-scale numerical examples that validate our approach, offer additional insights, and demonstrate that our method enables large-scale, discretization-invariant Bayesian inference.

We construct a bipartite generalization of Alon and Szegedy's nearly orthogonal vectors, thereby obtaining strong bounds for several extremal problems involving the Lov\'asz theta function, vector chromatic number, minimum semidefinite rank, nonnegative rank, and extension complexity of polytopes. In particular, we derive some general lower bounds for the vector chromatic number which may be of independent interest.

Generative diffusion models have achieved spectacular performance in many areas of generative modeling. While the fundamental ideas behind these models come from non-equilibrium physics, in this paper we show that many aspects of these models can be understood using the tools of equilibrium statistical mechanics. Using this reformulation, we show that generative diffusion models undergo second-order phase transitions corresponding to symmetry breaking phenomena. We argue that this lead to a form of instability that lies at the heart of their generative capabilities and that can be described by a set of mean field critical exponents. We conclude by analyzing recent work connecting diffusion models and associative memory networks in view of the thermodynamic formulations.

Importance sampling is a popular technique in Bayesian inference: by reweighting samples drawn from a proposal distribution we are able to obtain samples and moment estimates from a Bayesian posterior over some $n$ latent variables. Recent work, however, indicates that importance sampling scales poorly -- in order to accurately approximate the true posterior, the required number of importance samples grows is exponential in the number of latent variables [Chatterjee and Diaconis, 2018]. Massively parallel importance sampling works around this issue by drawing $K$ samples for each of the $n$ latent variables and reasoning about all $K^n$ combinations of latent samples. In principle, we can reason efficiently over $K^n$ combinations of samples by exploiting conditional independencies in the generative model. However, in practice this requires complex algorithms that traverse backwards through the graphical model, and we need separate backward traversals for each computation (posterior expectations, marginals and samples). Our contribution is to exploit the source term trick from physics to entirely avoid the need to hand-write backward traversals. Instead, we demonstrate how to simply and easily compute all the required quantities -- posterior expectations, marginals and samples -- by differentiating through a slightly modified marginal likelihood estimator.

Uniform continuity bounds on entropies are generally expressed in terms of a single distance measure between a pair of probability distributions or quantum states, typically, the total variation distance or trace distance. However, if an additional distance measure between the probability distributions or states is known, then the continuity bounds can be significantly strengthened. Here, we prove a tight uniform continuity bound for the Shannon entropy in terms of both the local- and total variation distances, sharpening an inequality proven in [I. Sason, IEEE Trans. Inf. Th., 59, 7118 (2013)]. We also obtain a uniform continuity bound for the von Neumann entropy in terms of both the operator norm- and trace distances. The bound is tight when the quotient of the trace distance by the operator norm distance is an integer. We then apply our results to compute upper bounds on the quantum- and private classical capacities of channels. We begin by refining the concept of approximate degradable channels, namely, $\varepsilon$-degradable channels, which are, by definition, $\varepsilon$-close in diamond norm to their complementary channel when composed with a degrading channel. To this end, we introduce the notion of $(\varepsilon,\nu)$-degradable channels; these are $\varepsilon$-degradable channels that are, in addition, $\nu$-close in completely bounded spectral norm to their complementary channel, when composed with the same degrading channel. This allows us to derive improved upper bounds to the quantum- and private classical capacities of such channels. Moreover, these bounds can be further improved by considering certain unstabilized versions of the above norms. We show that upper bounds on the latter can be efficiently expressed as semidefinite programs. We illustrate our results by obtaining a new upper bound on the quantum capacity of the qubit depolarizing channel.

北京阿比特科技有限公司