亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

As machine learning (ML) algorithms are increasingly used in high-stakes applications, concerns have arisen that they may be biased against certain social groups. Although many approaches have been proposed to make ML models fair, they typically rely on the assumption that data distributions in training and deployment are identical. Unfortunately, this is commonly violated in practice and a model that is fair during training may lead to an unexpected outcome during its deployment. Although the problem of designing robust ML models under dataset shifts has been widely studied, most existing works focus only on the transfer of accuracy. In this paper, we study the transfer of both fairness and accuracy under domain generalization where the data at test time may be sampled from never-before-seen domains. We first develop theoretical bounds on the unfairness and expected loss at deployment, and then derive sufficient conditions under which fairness and accuracy can be perfectly transferred via invariant representation learning. Guided by this, we design a learning algorithm such that fair ML models learned with training data still have high fairness and accuracy when deployment environments change. Experiments on real-world data validate the proposed algorithm. Model implementation is available at //github.com/pth1993/FATDM.

相關內容

Domain Generalization (DG) is essentially a sub-branch of out-of-distribution generalization, which trains models from multiple source domains and generalizes to unseen target domains. Recently, some domain generalization algorithms have emerged, but most of them were designed with non-transferable complex architecture. Additionally, contrastive learning has become a promising solution for simplicity and efficiency in DG. However, existing contrastive learning neglected domain shifts that caused severe model confusions. In this paper, we propose a Dual-Contrastive Learning (DCL) module on feature and prototype contrast. Moreover, we design a novel Causal Fusion Attention (CFA) module to fuse diverse views of a single image to attain prototype. Furthermore, we introduce a Similarity-based Hard-pair Mining (SHM) strategy to leverage information on diversity shift. Extensive experiments show that our method outperforms state-of-the-art algorithms on three DG datasets. The proposed algorithm can also serve as a plug-and-play module without usage of domain labels.

Both long-tailed and noisily labeled data frequently appear in real-world applications and impose significant challenges for learning. Most prior works treat either problem in an isolated way and do not explicitly consider the coupling effects of the two. Our empirical observation reveals that such solutions fail to consistently improve the learning when the dataset is long-tailed with label noise. Moreover, with the presence of label noise, existing methods do not observe universal improvements across different sub-populations; in other words, some sub-populations enjoyed the benefits of improved accuracy at the cost of hurting others. Based on these observations, we introduce the Fairness Regularizer (FR), inspired by regularizing the performance gap between any two sub-populations. We show that the introduced fairness regularizer improves the performances of sub-populations on the tail and the overall learning performance. Extensive experiments demonstrate the effectiveness of the proposed solution when complemented with certain existing popular robust or class-balanced methods.

Optional type annotations allow for enriching dynamic programming languages with static typing features like better Integrated Development Environment (IDE) support, more precise program analysis, and early detection and prevention of type-related runtime errors. Machine learning-based type inference promises interesting results for automating this task. However, the practical usage of such systems depends on their ability to generalize across different domains, as they are often applied outside their training domain. In this work, we investigate Type4Py as a representative of state-of-the-art deep learning-based type inference systems, by conducting extensive cross-domain experiments. Thereby, we address the following problems: class imbalances, out-of-vocabulary words, dataset shifts, and unknown classes. To perform such experiments, we use the datasets ManyTypes4Py and CrossDomainTypes4Py. The latter we introduce in this paper. Our dataset enables the evaluation of type inference systems in different domains of software projects and has over 1,000,000 type annotations mined on the platforms GitHub and Libraries. It consists of data from the two domains web development and scientific calculation. Through our experiments, we detect that the shifts in the dataset and the long-tailed distribution with many rare and unknown data types decrease the performance of the deep learning-based type inference system drastically. In this context, we test unsupervised domain adaptation methods and fine-tuning to overcome these issues. Moreover, we investigate the impact of out-of-vocabulary words.

Autonomous Underwater Vehicles (AUVs) conduct regular visual surveys of marine environments to characterise and monitor the composition and diversity of the benthos. The use of machine learning classifiers for this task is limited by the low numbers of annotations available and the many fine-grained classes involved. In addition to these challenges, there are domain shifts between image sets acquired during different AUV surveys due to changes in camera systems, imaging altitude, illumination and water column properties leading to a drop in classification performance for images from a different survey where some or all these elements may have changed. This paper proposes a framework to improve the performance of a benthic morphospecies classifier when used to classify images from a different survey compared to the training data. We adapt the SymmNet state-of-the-art Unsupervised Domain Adaptation method with an efficient bilinear pooling layer and image scaling to normalise spatial resolution, and show improved classification accuracy. We test our approach on two datasets with images from AUV surveys with different imaging payloads and locations. The results show that generic domain adaptation can be enhanced to produce a significant increase in accuracy for images from an AUV survey that differs from the training images.

The increasing availability of real-time data has fueled the prevalence of algorithmic bidding (or autobidding) in online advertising markets, and has enabled online ad platforms to produce signals through machine learning techniques (i.e., ML advice) on advertisers' true perceived values for ad conversions. Previous works have studied the auction design problem while incorporating ML advice through various forms to improve total welfare of advertisers. Yet, such improvements could come at the cost of individual bidders' welfare, consequently eroding fairness of the ad platform. Motivated by this, we study how ad platforms can utilize ML advice to improve welfare guarantees and fairness on the individual bidder level in the autobidding world. We focus on a practical setting where ML advice takes the form of lower confidence bounds (or confidence intervals). We motivate a simple approach that directly sets such advice as personalized reserve prices when the platform consists of value-maximizing autobidders who are subject to return-on-ad spent (ROAS) constraints competing in multiple parallel auctions. Under parallel VCG auctions with ML advice-based reserves, we present a worst-case welfare lower-bound guarantee for individual agents, and show that platform fairness is positively correlated with ML advice quality. We also present an instance that demonstrates our welfare guarantee is tight. Further, we prove an impossibility result showing that no truthful, and possibly randomized mechanism with anonymous allocations and ML advice as personalized reserves can achieve universally better fairness guarantees than VCG when coupled with ML advice of the same quality. Finally, we extend our fairness guarantees with ML advice to generalized first price (GFP) and generalized second price (GSP) auctions.

Invariant risk minimization (IRM) has recently emerged as a promising alternative for domain generalization. Nevertheless, the loss function is difficult to optimize for nonlinear classifiers and the original optimization objective could fail when pseudo-invariant features and geometric skews exist. Inspired by IRM, in this paper we propose a novel formulation for domain generalization, dubbed invariant information bottleneck (IIB). IIB aims at minimizing invariant risks for nonlinear classifiers and simultaneously mitigating the impact of pseudo-invariant features and geometric skews. Specifically, we first present a novel formulation for invariant causal prediction via mutual information. Then we adopt the variational formulation of the mutual information to develop a tractable loss function for nonlinear classifiers. To overcome the failure modes of IRM, we propose to minimize the mutual information between the inputs and the corresponding representations. IIB significantly outperforms IRM on synthetic datasets, where the pseudo-invariant features and geometric skews occur, showing the effectiveness of proposed formulation in overcoming failure modes of IRM. Furthermore, experiments on DomainBed show that IIB outperforms $13$ baselines by $0.9\%$ on average across $7$ real datasets.

Invariant approaches have been remarkably successful in tackling the problem of domain generalization, where the objective is to perform inference on data distributions different from those used in training. In our work, we investigate whether it is possible to leverage domain information from the unseen test samples themselves. We propose a domain-adaptive approach consisting of two steps: a) we first learn a discriminative domain embedding from unsupervised training examples, and b) use this domain embedding as supplementary information to build a domain-adaptive model, that takes both the input as well as its domain into account while making predictions. For unseen domains, our method simply uses few unlabelled test examples to construct the domain embedding. This enables adaptive classification on any unseen domain. Our approach achieves state-of-the-art performance on various domain generalization benchmarks. In addition, we introduce the first real-world, large-scale domain generalization benchmark, Geo-YFCC, containing 1.1M samples over 40 training, 7 validation, and 15 test domains, orders of magnitude larger than prior work. We show that the existing approaches either do not scale to this dataset or underperform compared to the simple baseline of training a model on the union of data from all training domains. In contrast, our approach achieves a significant improvement.

Domain generalization (DG), i.e., out-of-distribution generalization, has attracted increased interests in recent years. Domain generalization deals with a challenging setting where one or several different but related domain(s) are given, and the goal is to learn a model that can generalize to an unseen test domain. For years, great progress has been achieved. This paper presents the first review for recent advances in domain generalization. First, we provide a formal definition of domain generalization and discuss several related fields. Next, we thoroughly review the theories related to domain generalization and carefully analyze the theory behind generalization. Then, we categorize recent algorithms into three classes and present them in detail: data manipulation, representation learning, and learning strategy, each of which contains several popular algorithms. Third, we introduce the commonly used datasets and applications. Finally, we summarize existing literature and present some potential research topics for the future.

This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.

Deep neural networks have achieved remarkable success in computer vision tasks. Existing neural networks mainly operate in the spatial domain with fixed input sizes. For practical applications, images are usually large and have to be downsampled to the predetermined input size of neural networks. Even though the downsampling operations reduce computation and the required communication bandwidth, it removes both redundant and salient information obliviously, which results in accuracy degradation. Inspired by digital signal processing theories, we analyze the spectral bias from the frequency perspective and propose a learning-based frequency selection method to identify the trivial frequency components which can be removed without accuracy loss. The proposed method of learning in the frequency domain leverages identical structures of the well-known neural networks, such as ResNet-50, MobileNetV2, and Mask R-CNN, while accepting the frequency-domain information as the input. Experiment results show that learning in the frequency domain with static channel selection can achieve higher accuracy than the conventional spatial downsampling approach and meanwhile further reduce the input data size. Specifically for ImageNet classification with the same input size, the proposed method achieves 1.41% and 0.66% top-1 accuracy improvements on ResNet-50 and MobileNetV2, respectively. Even with half input size, the proposed method still improves the top-1 accuracy on ResNet-50 by 1%. In addition, we observe a 0.8% average precision improvement on Mask R-CNN for instance segmentation on the COCO dataset.

北京阿比特科技有限公司