The solution of computational fluid dynamics problems is one of the most computationally hard tasks, especially in the case of complex geometries and turbulent flow regimes. We propose to use Tensor Train (TT) methods, which possess logarithmic complexity in problem size and have great similarities with quantum algorithms in the structure of data representation. We develop the Tensor train Finite Element Method -- TetraFEM -- and the explicit numerical scheme for the solution of the incompressible Navier-Stokes equation via Tensor Trains. We test this approach on the simulation of liquids mixing in a T-shape mixer, which, to our knowledge, was done for the first time using tensor methods in such non-trivial geometries. As expected, we achieve exponential compression in memory of all FEM matrices and demonstrate an exponential speed-up compared to the conventional FEM implementation on dense meshes. In addition, we discuss the possibility of extending this method to a quantum computer to solve more complex problems. This paper is based on work we conducted for Evonik Industries AG.
We present an exponentially convergent numerical method to approximate the solution of the Cauchy problem for the inhomogeneous fractional differential equation with an unbounded operator coefficient and Caputo fractional derivative in time. The numerical method is based on the newly obtained solution formula that consolidates the mild solution representations of sub-parabolic, parabolic and sub-hyperbolic equations with sectorial operator coefficient $A$ and non-zero initial data. The involved integral operators are approximated using the sinc-quadrature formulas that are tailored to the spectral parameters of $A$, fractional order $\alpha$ and the smoothness of the first initial condition, as well as to the properties of the equation's right-hand side $f(t)$. The resulting method possesses exponential convergence for positive sectorial $A$, any finite $t$, including $t = 0$ and the whole range $\alpha \in (0,2)$. It is suitable for a practically important case, when no knowledge of $f(t)$ is available outside the considered interval $t \in [0, T]$. The algorithm of the method is capable of multi-level parallelism. We provide numerical examples that confirm the theoretical error estimates.
The goal of this work is to study waves interacting with partially immersed objects allowed to move freely in the vertical direction, and in a regime in which the propagation of the waves is described by the one dimensional Boussinesq-Abbott system. The problem can be reduced to a transmission problem for this Boussinesq system, in which the transmission conditions between the components of the domain at the left and at the right of the object are determined through the resolution of coupled forced ODEs in time satisfied by the vertical displacement of the object and the average discharge in the portion of the fluid located under the object. We propose a new extended formulation in which these ODEs are complemented by two other forced ODEs satisfied by the trace of the surface elevation at the contact points. The interest of this new extended formulation is that the forcing terms are easy to compute numerically and that the surface elevation at the contact points is furnished for free. Based on this formulation, we propose a second order scheme that involves a generalization of the MacCormack scheme with nonlocal flux and a source term, which is coupled to a second order Heun scheme for the ODEs. In order to validate this scheme, several explicit solutions for this wave-structure interaction problem are derived and can serve as benchmark for future codes. As a byproduct, our method provides a second order scheme for the generation of waves at the entrance of the numerical domain for the Boussinesq-Abbott system.
We present a mass lumping approach based on an isogeometric Petrov-Galerkin method that preserves higher-order spatial accuracy in explicit dynamics calculations irrespective of the polynomial degree of the spline approximation. To discretize the test function space, our method uses an approximate dual basis, whose functions are smooth, have local support and satisfy approximate bi-orthogonality with respect to a trial space of B-splines. The resulting mass matrix is ``close'' to the identity matrix. Specifically, a lumped version of this mass matrix preserves all relevant polynomials when utilized in a Galerkin projection. Consequently, the mass matrix can be lumped (via row-sum lumping) without compromising spatial accuracy in explicit dynamics calculations. We address the imposition of Dirichlet boundary conditions and the preservation of approximate bi-orthogonality under geometric mappings. In addition, we establish a link between the exact dual and approximate dual basis functions via an iterative algorithm that improves the approximate dual basis towards exact bi-orthogonality. We demonstrate the performance of our higher-order accurate mass lumping approach via convergence studies and spectral analyses of discretized beam, plate and shell models.
In this paper, we propose a new formulation and a suitable finite element method for the steady coupling of viscous flow in deformable porous media using divergence-conforming filtration fluxes. The proposed method is based on the use of parameter-weighted spaces, which allows for a more accurate and robust analysis of the continuous and discrete problems. Furthermore, we conduct a solvability analysis of the proposed method and derive optimal error estimates in appropriate norms. These error estimates are shown to be robust in the case of large Lam\'e parameters and small permeability and storativity coefficients. To illustrate the effectiveness of the proposed method, we provide a few representative numerical examples, including convergence verification, poroelastic channel flow simulation, and test the robustness of block-diagonal preconditioners with respect to model parameters.
Surface Stokes and Navier-Stokes equations are used to model fluid flow on surfaces. They have attracted significant recent attention in the numerical analysis literature because approximation of their solutions poses significant challenges not encountered in the Euclidean context. One challenge comes from the need to simultaneously enforce tangentiality and $H^1$ conformity (continuity) of discrete vector fields used to approximate solutions in the velocity-pressure formulation. Existing methods in the literature all enforce one of these two constraints weakly either by penalization or by use of Lagrange multipliers. Missing so far is a robust and systematic construction of surface Stokes finite element spaces which employ nodal degrees of freedom, including MINI, Taylor-Hood, Scott-Vogelius, and other composite elements which can lead to divergence-conforming or pressure-robust discretizations. In this paper we construct surface MINI spaces whose velocity fields are tangential. They are not $H^1$-conforming, but do lie in $H({\rm div})$ and do not require penalization to achieve optimal convergence rates. We prove stability and optimal-order energy-norm convergence of the method and demonstrate optimal-order convergence of the velocity field in $L_2$ via numerical experiments. The core advance in the paper is the construction of nodal degrees of freedom for the velocity field. This technique also may be used to construct surface counterparts to many other standard Euclidean Stokes spaces, and we accordingly present numerical experiments indicating optimal-order convergence of nonconforming tangential surface Taylor-Hood $\mathbb{P}^2-\mathbb{P}^1$ elements.
Entropy measures quantify the amount of information and correlations present in a quantum system. In practice, when the quantum state is unknown and only copies thereof are available, one must resort to the estimation of such entropy measures. Here we propose a variational quantum algorithm for estimating the von Neumann and R\'enyi entropies, as well as the measured relative entropy and measured R\'enyi relative entropy. Our approach first parameterizes a variational formula for the measure of interest by a quantum circuit and a classical neural network, and then optimizes the resulting objective over parameter space. Numerical simulations of our quantum algorithm are provided, using a noiseless quantum simulator. The algorithm provides accurate estimates of the various entropy measures for the examples tested, which renders it as a promising approach for usage in downstream tasks.
It is challenging to perform identification on soft robots due to their underactuated, high dimensional dynamics. In this work, we present a data-driven modeling framework, based on geometric mechanics (also known as gauge theory), that can be applied to systems with low-bandwidth actuation of the shape space. By exploiting temporal asymmetries in actuator dynamics, our approach enables the design of robots that can be driven by a single control input. We present a method for constructing a series connected model comprising actuator and locomotor dynamics based on data points from stochastically perturbed, repeated behaviors around the observed limit cycle. We demonstrate our methods on a real-world example of a soft crawler made by stimuli-responsive hydrogels that locomotes on merely one cycling control signal by utilizing its geometric and temporal asymmetry. For systems with first-order, low-pass actuator dynamics, such as swelling-driven actuators used in hydrogel crawlers, we show that first order Taylor approximations can well capture the dynamics of the system shape as well as its movements. Finally, we propose an approach of numerically optimizing control signals by iteratively refining models and optimizing the input waveform.
Scientific and engineering problems often involve parametric partial differential equations (PDEs), such as uncertainty quantification, optimizations, and inverse problems. However, solving these PDEs repeatedly can be prohibitively expensive, especially for large-scale complex applications. To address this issue, reduced order modeling (ROM) has emerged as an effective method to reduce computational costs. However, ROM often requires significant modifications to the existing code, which can be time-consuming and complex, particularly for large-scale legacy codes. Non-intrusive methods have gained attention as an alternative approach. However, most existing non-intrusive approaches are purely data-driven and may not respect the underlying physics laws during the online stage, resulting in less accurate approximations of the reduced solution. In this study, we propose a new non-intrusive bi-fidelity reduced basis method for time-independent parametric PDEs. Our algorithm utilizes the discrete operator, solutions, and right-hand sides obtained from the high-fidelity legacy solver. By leveraging a low-fidelity model, we efficiently construct the reduced operator and right-hand side for new parameter values during the online stage. Unlike other non-intrusive ROM methods, we enforce the reduced equation during the online stage. In addition, the non-intrusive nature of our algorithm makes it straightforward and applicable to general nonlinear time-independent problems. We demonstrate its performance through several benchmark examples, including nonlinear and multiscale PDEs.
Understanding superfluidity remains a major goal of condensed matter physics. Here we tackle this challenge utilizing the recently developed Fermionic neural network (FermiNet) wave function Ansatz for variational Monte Carlo calculations. We study the unitary Fermi gas, a system with strong, short-range, two-body interactions known to possess a superfluid ground state but difficult to describe quantitatively. We demonstrate key limitations of the FermiNet Ansatz in studying the unitary Fermi gas and propose a simple modification that outperforms the original FermiNet significantly, giving highly accurate results. We prove mathematically that the new Ansatz, which only differs from the original Ansatz by the method of antisymmetrization, is a strict generalization of the original FermiNet architecture, despite the use of fewer parameters. Our approach shares several advantages with the FermiNet: the use of a neural network removes the need for an underlying basis set; and the flexibility of the network yields extremely accurate results within a variational quantum Monte Carlo framework that provides access to unbiased estimates of arbitrary ground-state expectation values. We discuss how the method can be extended to study other superfluids.
To integrate large systems of nonlinear differential equations in time, we consider a variant of nonlinear waveform relaxation (also known as dynamic iteration or Picard-Lindel\"of iteration), where at each iteration a linear inhomogeneous system of differential equations has to be solved. This is done by the exponential block Krylov subspace (EBK) method. Thus, we have an inner-outer iterative method, where iterative approximations are determined over a certain time interval, with no time stepping involved. This approach has recently been shown to be efficient as a time-parallel integrator within the PARAEXP framework. In this paper, convergence behavior of this method is assessed theoretically and practically. We examine efficiency of the method by testing it on nonlinear Burgers and Liouville-Bratu-Gelfand equations and comparing its performance with that of conventional time-stepping integrators.