Broadcast and consensus are most fundamental tasks in distributed computing. These tasks are particularly challenging in dynamic networks where communication across the network links may be unreliable, e.g., due to mobility or failures. Indeed, over the last years, researchers have derived several impossibility results and high time complexity lower bounds (i.e., linear in the number of nodes $n$) for these tasks, even for oblivious message adversaries where communication networks are rooted trees. However, such deterministic adversarial models may be overly conservative, as many processes in real-world settings are stochastic in nature rather than worst case. This paper initiates the study of broadcast and consensus on stochastic dynamic networks, introducing a randomized oblivious message adversary. Our model is reminiscent of the SI model in epidemics, however, revolving around trees (which renders the analysis harder due to the apparent lack of independence). In particular, we show that if information dissemination occurs along random rooted trees, broadcast and consensus complete fast with high probability, namely in logarithmic time. Our analysis proves the independence of a key variable, which enables a formal understanding of the dissemination process. More formally, for a network with $n$ nodes, we first consider the completely random case where in each round the communication network is chosen uniformly at random among rooted trees. We then introduce the notion of randomized oblivious message adversary, where in each round, an adversary can choose $k$ edges to appear in the communication network, and then a rooted tree is chosen uniformly at random among the set of all rooted trees that include these edges. We show that broadcast completes in $O(k+\log n)$ rounds, and that this it is also the case for consensus as long as $k \le 0.1n$.
Adversarial attacks are a potential threat to machine learning models by causing incorrect predictions through imperceptible perturbations to the input data. While these attacks have been extensively studied in unstructured data like images, applying them to tabular data, poses new challenges. These challenges arise from the inherent heterogeneity and complex feature interdependencies in tabular data, which differ from the image data. To account for this distinction, it is necessary to establish tailored imperceptibility criteria specific to tabular data. However, there is currently a lack of standardised metrics for assessing the imperceptibility of adversarial attacks on tabular data. To address this gap, we propose a set of key properties and corresponding metrics designed to comprehensively characterise imperceptible adversarial attacks on tabular data. These are: proximity to the original input, sparsity of altered features, deviation from the original data distribution, sensitivity in perturbing features with narrow distribution, immutability of certain features that should remain unchanged, feasibility of specific feature values that should not go beyond valid practical ranges, and feature interdependencies capturing complex relationships between data attributes. We evaluate the imperceptibility of five adversarial attacks, including both bounded attacks and unbounded attacks, on tabular data using the proposed imperceptibility metrics. The results reveal a trade-off between the imperceptibility and effectiveness of these attacks. The study also identifies limitations in current attack algorithms, offering insights that can guide future research in the area. The findings gained from this empirical analysis provide valuable direction for enhancing the design of adversarial attack algorithms, thereby advancing adversarial machine learning on tabular data.
Nutrient load simulators are large, deterministic, models that simulate the hydrodynamics and biogeochemical processes in aquatic ecosystems. They are central tools for planning cost efficient actions to fight eutrophication since they allow scenario predictions on impacts of nutrient load reductions to, e.g., harmful algal biomass growth. Due to being computationally heavy, the uncertainties related to these predictions are typically not rigorously assessed though. In this work, we developed a novel Bayesian computational approach for estimating the uncertainties in predictions of the Finnish coastal nutrient load model FICOS. First, we constructed a likelihood function for the multivariate spatiotemporal outputs of the FICOS model. Then, we used Bayes optimization to locate the posterior mode for the model parameters conditional on long term monitoring data. After that, we constructed a space filling design for FICOS model runs around the posterior mode and used it to train a Gaussian process emulator for the (log) posterior density of the model parameters. We then integrated over this (approximate) parameter posterior to produce probabilistic predictions for algal biomass and chlorophyll a concentration under alternative nutrient load reduction scenarios. Our computational algorithm allowed for fast posterior inference and the Gaussian process emulator had good predictive accuracy within the highest posterior probability mass region. The posterior predictive scenarios showed that the probability to reach the EUs Water Framework Directive objectives in the Finnish Archipelago Sea is generally low even under large load reductions.
The claw problem is central in the fields of theoretical computer science as well as cryptography. The optimal quantum query complexity of the problem is known to be $\Omega\left(\sqrt{G}+(FG)^{1/3} \right)$ for input functions $f\colon [F]\to Z$ and $g\colon [G]\to Z$. However, the lower bound was proved when the range $Z$ is sufficiently large (i.e., $|{Z}|=\Omega(FG)$). The current paper proves the lower bound holds even for every smaller range $Z$ with $|{Z}|\ge F+G$. This implies that $\Omega\left(\sqrt{G}+(FG)^{1/3} \right)$ is tight for every such range. In addition, the lower bound $\Omega\left(\sqrt{G}+F^{1/3}G^{1/6}M^{1/6}\right)$ is provided for even smaller range $Z=[M]$ with every $M\in [2,F+G]$ by reducing the claw problem for $|{Z}|= F+G$. The proof technique is general enough to apply to any $k$-symmetric property (e.g., the $k$-claw problem), i.e., the Boolean function $\Phi$ on the set of $k$ functions with different-size domains and a common range such that $\Phi$ is invariant under the permutations over each domain and the permutations over the range. More concretely, it generalizes Ambainis's argument [Theory of Computing, 1(1):37-46] to the multiple-function case by using the notion of multisymmetric polynomials.
Surrogate models are used to predict the behavior of complex energy systems that are too expensive to simulate with traditional numerical methods. Our work introduces the use of language descriptions, which we call "system captions" or SysCaps, to interface with such surrogates. We argue that interacting with surrogates through text, particularly natural language, makes these models more accessible for both experts and non-experts. We introduce a lightweight multimodal text and timeseries regression model and a training pipeline that uses large language models (LLMs) to synthesize high-quality captions from simulation metadata. Our experiments on two real-world simulators of buildings and wind farms show that our SysCaps-augmented surrogates have better accuracy on held-out systems than traditional methods while enjoying new generalization abilities, such as handling semantically related descriptions of the same test system. Additional experiments also highlight the potential of SysCaps to unlock language-driven design space exploration and to regularize training through prompt augmentation.
Common practice in modern machine learning involves fitting a large number of parameters relative to the number of observations. These overparameterized models can exhibit surprising generalization behavior, e.g., ``double descent'' in the prediction error curve when plotted against the raw number of model parameters, or another simplistic notion of complexity. In this paper, we revisit model complexity from first principles, by first reinterpreting and then extending the classical statistical concept of (effective) degrees of freedom. Whereas the classical definition is connected to fixed-X prediction error (in which prediction error is defined by averaging over the same, nonrandom covariate points as those used during training), our extension of degrees of freedom is connected to random-X prediction error (in which prediction error is averaged over a new, random sample from the covariate distribution). The random-X setting more naturally embodies modern machine learning problems, where highly complex models, even those complex enough to interpolate the training data, can still lead to desirable generalization performance under appropriate conditions. We demonstrate the utility of our proposed complexity measures through a mix of conceptual arguments, theory, and experiments, and illustrate how they can be used to interpret and compare arbitrary prediction models.
Large Language Models (LLMs) are increasingly being explored for their potential in software engineering, particularly in static analysis tasks. In this study, we investigate the potential of current LLMs to enhance call-graph analysis and type inference for Python and JavaScript programs. We empirically evaluated 24 LLMs, including OpenAI's GPT series and open-source models like LLaMA and Mistral, using existing and newly developed benchmarks. Specifically, we enhanced TypeEvalPy, a micro-benchmarking framework for type inference in Python, with auto-generation capabilities, expanding its scope from 860 to 77,268 type annotations for Python. Additionally, we introduced SWARM-CG and SWARM-JS, comprehensive benchmarking suites for evaluating call-graph construction tools across multiple programming languages. Our findings reveal a contrasting performance of LLMs in static analysis tasks. For call-graph generation in Python, traditional static analysis tools like PyCG significantly outperform LLMs. In JavaScript, the static tool TAJS underperforms due to its inability to handle modern language features, while LLMs, despite showing potential with models like mistral-large-it-2407-123b and GPT-4o, struggle with completeness and soundness in both languages for call-graph analysis. Conversely, LLMs demonstrate a clear advantage in type inference for Python, surpassing traditional tools like HeaderGen and hybrid approaches such as HiTyper. These results suggest that while LLMs hold promise in type inference, their limitations in call-graph analysis highlight the need for further research. Our study provides a foundation for integrating LLMs into static analysis workflows, offering insights into their strengths and current limitations.
As artificial intelligence (AI) models continue to scale up, they are becoming more capable and integrated into various forms of decision-making systems. For models involved in moral decision-making, also known as artificial moral agents (AMA), interpretability provides a way to trust and understand the agent's internal reasoning mechanisms for effective use and error correction. In this paper, we provide an overview of this rapidly-evolving sub-field of AI interpretability, introduce the concept of the Minimum Level of Interpretability (MLI) and recommend an MLI for various types of agents, to aid their safe deployment in real-world settings.
The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.
It has been a long time that computer architecture and systems are optimized to enable efficient execution of machine learning (ML) algorithms or models. Now, it is time to reconsider the relationship between ML and systems, and let ML transform the way that computer architecture and systems are designed. This embraces a twofold meaning: the improvement of designers' productivity, and the completion of the virtuous cycle. In this paper, we present a comprehensive review of work that applies ML for system design, which can be grouped into two major categories, ML-based modelling that involves predictions of performance metrics or some other criteria of interest, and ML-based design methodology that directly leverages ML as the design tool. For ML-based modelling, we discuss existing studies based on their target level of system, ranging from the circuit level to the architecture/system level. For ML-based design methodology, we follow a bottom-up path to review current work, with a scope of (micro-)architecture design (memory, branch prediction, NoC), coordination between architecture/system and workload (resource allocation and management, data center management, and security), compiler, and design automation. We further provide a future vision of opportunities and potential directions, and envision that applying ML for computer architecture and systems would thrive in the community.
We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.