亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Molecular communication (MC) is a paradigm that employs molecules as information transmitters, hence, requiring unconventional transceivers and detection techniques for the Internet of Bio-Nano Things (IoBNT). In this study, we provide a novel MC model that incorporates a spherical transmitter and receiver with partial absorption. This model offers a more realistic representation than receiver architectures in literature, e.g. passive or entirely absorbing configurations. An optimization-based technique utilizing particle swarm optimization (PSO) is employed to accurately estimate the cumulative number of molecules received. This technique yields nearly constant correction parameters and demonstrates a significant improvement of 5 times in terms of root mean square error (RMSE). The estimated channel model provides an approximate analytical impulse response; hence, it is used for estimating channel parameters such as distance, diffusion coefficient, or a combination of both. We apply iterative maximum likelihood estimation (MLE) for the parameter estimation, which gives consistent errors compared to the estimated Cramer-Rao Lower Bound (CLRB).

相關內容

Movable antenna (MA) has emerged as a promising technology to enhance wireless communication performance by enabling the local movement of antennas at the transmitter (Tx) and/or receiver (Rx) for achieving more favorable channel conditions. As the existing studies on MA-aided wireless communications have mainly considered narrow-band transmission in flat fading channels, we investigate in this paper the MA-aided wideband communications employing orthogonal frequency division multiplexing (OFDM) in frequency-selective fading channels. Under the general multi-tap field-response channel model, the wireless channel variations in both space and frequency are characterized with different positions of the MAs. Unlike the narrow-band transmission where the optimal MA position at the Tx/Rx simply maximizes the single-tap channel amplitude, the MA position in the wideband case needs to balance the amplitudes and phases over multiple channel taps in order to maximize the OFDM transmission rate over multiple frequency subcarriers. First, we derive an upper bound on the OFDM achievable rate in closed form when the size of the Tx/Rx region for antenna movement is arbitrarily large. Next, we develop a parallel greedy ascent (PGA) algorithm to obtain locally optimal solutions to the MAs' positions for OFDM rate maximization subject to finite-size Tx/Rx regions. To reduce computational complexity, a simplified PGA algorithm is also provided to optimize the MAs' positions more efficiently. Simulation results demonstrate that the proposed PGA algorithms can approach the OFDM rate upper bound closely with the increase of Tx/Rx region sizes and outperform conventional systems with fixed-position antennas (FPAs) under the wideband channel setup.

From an information theoretic perspective, joint communication and sensing (JCAS) represents a natural generalization of communication network functionality. However, it requires the re-evaluation of network performance from a multi-objective perspective. We develop a novel mathematical framework for characterizing the sensing and communication coverage probability and ergodic rate in JCAS networks. We employ a formulation of sensing parameter estimation based on mutual information to extend the notions of coverage probability and ergodic rate to the radar setting. We define sensing coverage probability as the probability that the rate of information extracted about the parameters of interest associated with a typical radar target exceeds some threshold, and sensing ergodic rate as the spatial average of the aforementioned rate of information. Using this framework, we analyze the downlink sensing and communication coverage and rate of a mmWave JCAS network employing a shared waveform, directional beamforming, and monostatic sensing. Leveraging tools from stochastic geometry, we derive upper and lower bounds for these quantities. We also develop several general technical results including: i) a generic method for obtaining closed form upper and lower bounds on the Laplace Transform of a shot noise process, ii) a new analog of H{\"o}lder's Inequality to the setting of harmonic means, and iii) a relation between the Laplace and Mellin Transforms of a non-negative random variable. We use the derived bounds to numerically investigate the performance of JCAS networks under varying base station and blockage density. Among several insights, our numerical analysis indicates that network densification improves sensing SINR performance -- in contrast to communications.

Stochastic approximation is a class of algorithms that update a vector iteratively, incrementally, and stochastically, including, e.g., stochastic gradient descent and temporal difference learning. One fundamental challenge in analyzing a stochastic approximation algorithm is to establish its stability, i.e., to show that the stochastic vector iterates are bounded almost surely. In this paper, we extend the celebrated Borkar-Meyn theorem for stability from the Martingale difference noise setting to the Markovian noise setting, which greatly improves its applicability in reinforcement learning, especially in those off-policy reinforcement learning algorithms with linear function approximation and eligibility traces. Central to our analysis is the diminishing asymptotic rate of change of a few functions, which is implied by both a form of strong law of large numbers and a commonly used V4 Lyapunov drift condition and trivially holds if the Markov chain is finite and irreducible.

Molecular communications is a technique emulated by researchers, which has already been used by the nature for millions of years. In Molecular Communications via Diffusion (MCvD), messenger molecules are emitted by a transmitter and propagate in the fluidic environment in a random manner. In biological systems, the environment can be considered a bounded space, surrounded by different structures, such as tissues and organs. The propagation of molecules is affected by these structures in the environment, which reflect the molecules upon collision. Hence, understanding the behavior of MCvD systems near reflecting surfaces is important for modeling molecular communication systems analytically. However, deriving the channel response of MCvD systems with an absorbing spherical receiver requires solving the diffusion equation in 3-D space in the presence of a reflecting boundary, which is extremely challenging. Therefore, derivation of the channel response in a bounded environment has remained one of the unanswered questions in the literature. In this paper, a method to model molecular communication systems near reflecting surfaces is proposed, and an analytical closed-form solution for the channel response is derived.

We consider a wireless communication system with a passive eavesdropper, in which a transmitter and legitimate receiver generate and use key bits to secure the transmission of their data. These bits are added to and used from a pool of available key bits. In this work, we analyze the reliability of the system in terms of the probability that the budget of available key bits will be exhausted. In addition, we investigate the latency before a transmission can take place. Since security, reliability, and latency are three important metrics for modern communication systems, it is of great interest to jointly analyze them in relation to the system parameters. In particular, we show under what conditions the system may remain in an active state indefinitely, i.e., never run out of available secret-key bits. The results presented in this work will allow system designers to adjust the system parameters in such a way that the requirements of the application in terms of both reliability and latency are met.

This manuscript portrays optimization as a process. In many practical applications the environment is so complex that it is infeasible to lay out a comprehensive theoretical model and use classical algorithmic theory and mathematical optimization. It is necessary as well as beneficial to take a robust approach, by applying an optimization method that learns as one goes along, learning from experience as more aspects of the problem are observed. This view of optimization as a process has become prominent in varied fields and has led to some spectacular success in modeling and systems that are now part of our daily lives.

Triple extraction is an essential task in information extraction for natural language processing and knowledge graph construction. In this paper, we revisit the end-to-end triple extraction task for sequence generation. Since generative triple extraction may struggle to capture long-term dependencies and generate unfaithful triples, we introduce a novel model, contrastive triple extraction with a generative transformer. Specifically, we introduce a single shared transformer module for encoder-decoder-based generation. To generate faithful results, we propose a novel triplet contrastive training object. Moreover, we introduce two mechanisms to further improve model performance (i.e., batch-wise dynamic attention-masking and triple-wise calibration). Experimental results on three datasets (i.e., NYT, WebNLG, and MIE) show that our approach achieves better performance than that of baselines.

Named entity recognition (NER) is the task to identify text spans that mention named entities, and to classify them into predefined categories such as person, location, organization etc. NER serves as the basis for a variety of natural language applications such as question answering, text summarization, and machine translation. Although early NER systems are successful in producing decent recognition accuracy, they often require much human effort in carefully designing rules or features. In recent years, deep learning, empowered by continuous real-valued vector representations and semantic composition through nonlinear processing, has been employed in NER systems, yielding stat-of-the-art performance. In this paper, we provide a comprehensive review on existing deep learning techniques for NER. We first introduce NER resources, including tagged NER corpora and off-the-shelf NER tools. Then, we systematically categorize existing works based on a taxonomy along three axes: distributed representations for input, context encoder, and tag decoder. Next, we survey the most representative methods for recent applied techniques of deep learning in new NER problem settings and applications. Finally, we present readers with the challenges faced by NER systems and outline future directions in this area.

We study how to generate captions that are not only accurate in describing an image but also discriminative across different images. The problem is both fundamental and interesting, as most machine-generated captions, despite phenomenal research progresses in the past several years, are expressed in a very monotonic and featureless format. While such captions are normally accurate, they often lack important characteristics in human languages - distinctiveness for each caption and diversity for different images. To address this problem, we propose a novel conditional generative adversarial network for generating diverse captions across images. Instead of estimating the quality of a caption solely on one image, the proposed comparative adversarial learning framework better assesses the quality of captions by comparing a set of captions within the image-caption joint space. By contrasting with human-written captions and image-mismatched captions, the caption generator effectively exploits the inherent characteristics of human languages, and generates more discriminative captions. We show that our proposed network is capable of producing accurate and diverse captions across images.

Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.

北京阿比特科技有限公司