In offline reinforcement learning (RL), addressing the out-of-distribution (OOD) action issue has been a focus, but we argue that there exists an OOD state issue that also impairs performance yet has been underexplored. Such an issue describes the scenario when the agent encounters states out of the offline dataset during the test phase, leading to uncontrolled behavior and performance degradation. To this end, we propose SCAS, a simple yet effective approach that unifies OOD state correction and OOD action suppression in offline RL. Technically, SCAS achieves value-aware OOD state correction, capable of correcting the agent from OOD states to high-value in-distribution states. Theoretical and empirical results show that SCAS also exhibits the effect of suppressing OOD actions. On standard offline RL benchmarks, SCAS achieves excellent performance without additional hyperparameter tuning. Moreover, benefiting from its OOD state correction feature, SCAS demonstrates enhanced robustness against environmental perturbations.
The dissertation presents four key contributions toward fairness and robustness in vision learning. First, to address the problem of large-scale data requirements, the dissertation presents a novel Fairness Domain Adaptation approach derived from two major novel research findings of Bijective Maximum Likelihood and Fairness Adaptation Learning. Second, to enable the capability of open-world modeling of vision learning, this dissertation presents a novel Open-world Fairness Continual Learning Framework. The success of this research direction is the result of two research lines, i.e., Fairness Continual Learning and Open-world Continual Learning. Third, since visual data are often captured from multiple camera views, robust vision learning methods should be capable of modeling invariant features across views. To achieve this desired goal, the research in this thesis will present a novel Geometry-based Cross-view Adaptation framework to learn robust feature representations across views. Finally, with the recent increase in large-scale videos and multimodal data, understanding the feature representations and improving the robustness of large-scale visual foundation models is critical. Therefore, this thesis will present novel Transformer-based approaches to improve the robust feature representations against multimodal and temporal data. Then, a novel Domain Generalization Approach will be presented to improve the robustness of visual foundation models. The research's theoretical analysis and experimental results have shown the effectiveness of the proposed approaches, demonstrating their superior performance compared to prior studies. The contributions in this dissertation have advanced the fairness and robustness of machine vision learning.
In safe offline reinforcement learning (RL), the objective is to develop a policy that maximizes cumulative rewards while strictly adhering to safety constraints, utilizing only offline data. Traditional methods often face difficulties in balancing these constraints, leading to either diminished performance or increased safety risks. We address these issues with a novel approach that begins by learning a conservatively safe policy through the use of Conditional Variational Autoencoders, which model the latent safety constraints. Subsequently, we frame this as a Constrained Reward-Return Maximization problem, wherein the policy aims to optimize rewards while complying with the inferred latent safety constraints. This is achieved by training an encoder with a reward-Advantage Weighted Regression objective within the latent constraint space. Our methodology is supported by theoretical analysis, including bounds on policy performance and sample complexity. Extensive empirical evaluation on benchmark datasets, including challenging autonomous driving scenarios, demonstrates that our approach not only maintains safety compliance but also excels in cumulative reward optimization, surpassing existing methods. Additional visualizations provide further insights into the effectiveness and underlying mechanisms of our approach.
In this paper, we propose a bilevel joint unsupervised and supervised training (BL-JUST) framework for automatic speech recognition. Compared to the conventional pre-training and fine-tuning strategy which is a disconnected two-stage process, BL-JUST tries to optimize an acoustic model such that it simultaneously minimizes both the unsupervised and supervised loss functions. Because BL-JUST seeks matched local optima of both loss functions, acoustic representations learned by the acoustic model strike a good balance between being generic and task-specific. We solve the BL-JUST problem using penalty-based bilevel gradient descent and evaluate the trained deep neural network acoustic models on various datasets with a variety of architectures and loss functions. We show that BL-JUST can outperform the widely-used pre-training and fine-tuning strategy and some other popular semi-supervised techniques.
By generating new yet effective data, data augmentation has become a promising method to mitigate the data sparsity problem in sequential recommendation. Existing works focus on augmenting the original data but rarely explore the issue of imbalanced relevance and diversity for augmented data, leading to semantic drift problems or limited performance improvements. In this paper, we propose a novel Balanced data Augmentation Plugin for Sequential Recommendation (BASRec) to generate data that balance relevance and diversity. BASRec consists of two modules: Single-sequence Augmentation and Cross-sequence Augmentation. The former leverages the randomness of the heuristic operators to generate diverse sequences for a single user, after which the diverse and the original sequences are fused at the representation level to obtain relevance. Further, we devise a reweighting strategy to enable the model to learn the preferences based on the two properties adaptively. The Cross-sequence Augmentation performs nonlinear mixing between different sequence representations from two directions. It produces virtual sequence representations that are diverse enough but retain the vital semantics of the original sequences. These two modules enhance the model to discover fine-grained preferences knowledge from single-user and cross-user perspectives. Extensive experiments verify the effectiveness of BASRec. The average improvement is up to 72.0% on GRU4Rec, 33.8% on SASRec, and 68.5% on FMLP-Rec. We demonstrate that BASRec generates data with a better balance between relevance and diversity than existing methods. The source code is available at //github.com/KingGugu/BASRec.
We study Online Convex Optimization (OCO) with adversarial constraints, where an online algorithm must make repeated decisions to minimize both convex loss functions and cumulative constraint violations. We focus on a setting where the algorithm has access to predictions of the loss and constraint functions. Our results show that we can improve the current best bounds of $ O(\sqrt{T}) $ regret and $ \tilde{O}(\sqrt{T}) $ cumulative constraint violations to $ O(\sqrt{E_T(f)}) $ and $ \tilde{O}(\sqrt{E_T(g)}) $, respectively, where $ E_T(f) $ and $ E_T(g) $ represent the cumulative prediction errors of the loss and constraint functions. In the worst case, where $ E_T(f) = O(T) $ and $ E_T(g) = O(T) $ (assuming bounded loss and constraint functions), our rates match the prior $ O(\sqrt{T}) $ results. However, when the loss and constraint predictions are accurate, our approach yields significantly smaller regret and cumulative constraint violations. Notably, if the constraint function remains constant over time, we achieve $ \tilde{O}(1) $ cumulative constraint violation, aligning with prior results.
As a paradigm of distributed machine learning, federated learning typically requires all edge devices to train a complete model locally. However, with the increasing scale of artificial intelligence models, the limited resources on edge devices often become a bottleneck for efficient fine-tuning. To address this challenge, federated split learning (FedSL) implements collaborative training across the edge devices and the server through model splitting. In this paper, we propose a lightweight FedSL scheme, that further alleviates the training burden on resource-constrained edge devices by pruning the client-side model dynamicly and using quantized gradient updates to reduce computation overhead. Additionally, we apply random dropout to the activation values at the split layer to reduce communication overhead. We conduct theoretical analysis to quantify the convergence performance of the proposed scheme. Finally, simulation results verify the effectiveness and advantages of the proposed lightweight FedSL in wireless network environments.
Offline reinforcement learning (RL) aims to find an optimal policy for Markov decision processes (MDPs) using a pre-collected dataset. In this work, we revisit the linear programming (LP) reformulation of Markov decision processes for offline RL, with the goal of developing algorithms with optimal $O(1/\sqrt{n})$ sample complexity, where $n$ is the sample size, under partial data coverage and general function approximation, and with favorable computational tractability. To this end, we derive new \emph{error bounds} for both the dual and primal-dual formulations of the LP, and incorporate them properly as \emph{constraints} in the LP reformulation. We then show that under a completeness-type assumption, $O(1/\sqrt{n})$ sample complexity can be achieved under standard single-policy coverage assumption, when one properly \emph{relaxes} the occupancy validity constraint in the LP. This framework can readily handle both infinite-horizon discounted and average-reward MDPs, in both general function approximation and tabular cases. The instantiation to the tabular case achieves either state-of-the-art or the first sample complexities of offline RL in these settings. To further remove any completeness-type assumption, we then introduce a proper \emph{lower-bound constraint} in the LP, and a variant of the standard single-policy coverage assumption. Such an algorithm leads to a $O(1/\sqrt{n})$ sample complexity with dependence on the \emph{value-function gap}, with only realizability assumptions. Our properly constrained LP framework advances the existing results in several aspects, in relaxing certain assumptions and achieving the optimal $O(1/\sqrt{n})$ sample complexity, with simple analyses. We hope our results bring new insights into the use of LP formulations and the equivalent primal-dual minimax optimization for offline RL, through the error-bound induced constraints.
In this work, we demonstrate the integration of a score-matching diffusion model into a deterministic architecture for time-domain musical source extraction, resulting in enhanced audio quality. To address the typically slow iterative sampling process of diffusion models, we apply consistency distillation and reduce the sampling process to a single step, achieving performance comparable to that of diffusion models, and with two or more steps, even surpassing them. Trained on the Slakh2100 dataset for four instruments (bass, drums, guitar, and piano), our model shows significant improvements across objective metrics compared to baseline methods. Sound examples are available at //consistency-separation.github.io/.
Molecular design and synthesis planning are two critical steps in the process of molecular discovery that we propose to formulate as a single shared task of conditional synthetic pathway generation. We report an amortized approach to generate synthetic pathways as a Markov decision process conditioned on a target molecular embedding. This approach allows us to conduct synthesis planning in a bottom-up manner and design synthesizable molecules by decoding from optimized conditional codes, demonstrating the potential to solve both problems of design and synthesis simultaneously. The approach leverages neural networks to probabilistically model the synthetic trees, one reaction step at a time, according to reactivity rules encoded in a discrete action space of reaction templates. We train these networks on hundreds of thousands of artificial pathways generated from a pool of purchasable compounds and a list of expert-curated templates. We validate our method with (a) the recovery of molecules using conditional generation, (b) the identification of synthesizable structural analogs, and (c) the optimization of molecular structures given oracle functions relevant to drug discovery.
Machine learning techniques have deeply rooted in our everyday life. However, since it is knowledge- and labor-intensive to pursue good learning performance, human experts are heavily involved in every aspect of machine learning. In order to make machine learning techniques easier to apply and reduce the demand for experienced human experts, automated machine learning (AutoML) has emerged as a hot topic with both industrial and academic interest. In this paper, we provide an up to date survey on AutoML. First, we introduce and define the AutoML problem, with inspiration from both realms of automation and machine learning. Then, we propose a general AutoML framework that not only covers most existing approaches to date but also can guide the design for new methods. Subsequently, we categorize and review the existing works from two aspects, i.e., the problem setup and the employed techniques. Finally, we provide a detailed analysis of AutoML approaches and explain the reasons underneath their successful applications. We hope this survey can serve as not only an insightful guideline for AutoML beginners but also an inspiration for future research.