亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Traditional halftoning usually drops colors when dithering images with binary dots, which makes it difficult to recover the original color information. We proposed a novel halftoning technique that converts a color image into a binary halftone with full restorability to its original version. Our novel base halftoning technique consists of two convolutional neural networks (CNNs) to produce the reversible halftone patterns, and a noise incentive block (NIB) to mitigate the flatness degradation issue of CNNs. Furthermore, to tackle the conflicts between the blue-noise quality and restoration accuracy in our novel base method, we proposed a predictor-embedded approach to offload predictable information from the network, which in our case is the luminance information resembling from the halftone pattern. Such an approach allows the network to gain more flexibility to produce halftones with better blue-noise quality without compromising the restoration quality. Detailed studies on the multiple-stage training method and loss weightings have been conducted. We have compared our predictor-embedded method and our novel method regarding spectrum analysis on halftone, halftone accuracy, restoration accuracy, and the data embedding studies. Our entropy evaluation evidences our halftone contains less encoding information than our novel base method. The experiments show our predictor-embedded method gains more flexibility to improve the blue-noise quality of halftones and maintains a comparable restoration quality with a higher tolerance for disturbances.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · Networking · 卷積 · 縮放 · Performer ·
2024 年 3 月 20 日

Object detection in remote sensing images (RSIs) often suffers from several increasing challenges, including the large variation in object scales and the diverse-ranging context. Prior methods tried to address these challenges by expanding the spatial receptive field of the backbone, either through large-kernel convolution or dilated convolution. However, the former typically introduces considerable background noise, while the latter risks generating overly sparse feature representations. In this paper, we introduce the Poly Kernel Inception Network (PKINet) to handle the above challenges. PKINet employs multi-scale convolution kernels without dilation to extract object features of varying scales and capture local context. In addition, a Context Anchor Attention (CAA) module is introduced in parallel to capture long-range contextual information. These two components work jointly to advance the performance of PKINet on four challenging remote sensing detection benchmarks, namely DOTA-v1.0, DOTA-v1.5, HRSC2016, and DIOR-R.

We introduce a novel neural volumetric pose feature, termed PoseMap, designed to enhance camera localization by encapsulating the information between images and the associated camera poses. Our framework leverages an Absolute Pose Regression (APR) architecture, together with an augmented NeRF module. This integration not only facilitates the generation of novel views to enrich the training dataset but also enables the learning of effective pose features. Additionally, we extend our architecture for self-supervised online alignment, allowing our method to be used and fine-tuned for unlabelled images within a unified framework. Experiments demonstrate that our method achieves 14.28% and 20.51% performance gain on average in indoor and outdoor benchmark scenes, outperforming existing APR methods with state-of-the-art accuracy.

Multispectral images (MSI) contain light information in different wavelengths of objects, which convey spectral-spatial information and help improve the performance of various image processing tasks. Numerous techniques have been created to extend the application of total variation regularization in restoring multispectral images, for example, based on channel coupling and adaptive total variation regularization. The primary contribution of this paper is to propose and develop a new multispectral total variation regularization in a generalized opponent transformation domain instead of the original multispectral image domain. Here opponent transformations for multispectral images are generalized from a well-known opponent transformation for color images. We will explore the properties of generalized opponent transformation total variation (GOTTV) regularization and the corresponding optimization formula for multispectral image restoration. To evaluate the effectiveness of the new GOTTV method, we provide numerical examples that showcase its superior performance compared to existing multispectral image total variation methods, using criteria such as MPSNR and MSSIM.

With diverse presentation forgery methods emerging continually, detecting the authenticity of images has drawn growing attention. Although existing methods have achieved impressive accuracy in training dataset detection, they still perform poorly in the unseen domain and suffer from forgery of irrelevant information such as background and identity, affecting generalizability. To solve this problem, we proposed a novel framework Selective Domain-Invariant Feature (SDIF), which reduces the sensitivity to face forgery by fusing content features and styles. Specifically, we first use a Farthest-Point Sampling (FPS) training strategy to construct a task-relevant style sample representation space for fusing with content features. Then, we propose a dynamic feature extraction module to generate features with diverse styles to improve the performance and effectiveness of the feature extractor. Finally, a domain separation strategy is used to retain domain-related features to help distinguish between real and fake faces. Both qualitative and quantitative results in existing benchmarks and proposals demonstrate the effectiveness of our approach.

Diffusion models (DMs) are widely used for generating high-quality high-dimensional images in a non-differentially private manner. To address this challenge, recent papers suggest pre-training DMs with public data, then fine-tuning them with private data using DP-SGD for a relatively short period. In this paper, we further improve the current state of DMs with DP by adopting the Latent Diffusion Models (LDMs). LDMs are equipped with powerful pre-trained autoencoders that map the high-dimensional pixels into lower-dimensional latent representations, in which DMs are trained, yielding a more efficient and fast training of DMs. In our algorithm, DP-LDMs, rather than fine-tuning the entire DMs, we fine-tune only the attention modules of LDMs at varying layers with privacy-sensitive data, reducing the number of trainable parameters by roughly 90% and achieving a better accuracy, compared to fine-tuning the entire DMs. The smaller parameter space to fine-tune with DP-SGD helps our algorithm to achieve new state-of-the-art results in several public-private benchmark data pairs.Our approach also allows us to generate more realistic, high-dimensional images (256x256) and those conditioned on text prompts with differential privacy, which have not been attempted before us, to the best of our knowledge. Our approach provides a promising direction for training more powerful, yet training-efficient differentially private DMs, producing high-quality high-dimensional DP images.

Blind image decomposition aims to decompose all components present in an image, typically used to restore a multi-degraded input image. While fully recovering the clean image is appealing, in some scenarios, users might want to retain certain degradations, such as watermarks, for copyright protection. To address this need, we add controllability to the blind image decomposition process, allowing users to enter which types of degradation to remove or retain. We design an architecture named controllable blind image decomposition network. Inserted in the middle of U-Net structure, our method first decomposes the input feature maps and then recombines them according to user instructions. Advantageously, this functionality is implemented at minimal computational cost: decomposition and recombination are all parameter-free. Experimentally, our system excels in blind image decomposition tasks and can outputs partially or fully restored images that well reflect user intentions. Furthermore, we evaluate and configure different options for the network structure and loss functions. This, combined with the proposed decomposition-and-recombination method, yields an efficient and competitive system for blind image decomposition, compared with current state-of-the-art methods.

2D-based Industrial Anomaly Detection has been widely discussed, however, multimodal industrial anomaly detection based on 3D point clouds and RGB images still has many untouched fields. Existing multimodal industrial anomaly detection methods directly concatenate the multimodal features, which leads to a strong disturbance between features and harms the detection performance. In this paper, we propose Multi-3D-Memory (M3DM), a novel multimodal anomaly detection method with hybrid fusion scheme: firstly, we design an unsupervised feature fusion with patch-wise contrastive learning to encourage the interaction of different modal features; secondly, we use a decision layer fusion with multiple memory banks to avoid loss of information and additional novelty classifiers to make the final decision. We further propose a point feature alignment operation to better align the point cloud and RGB features. Extensive experiments show that our multimodal industrial anomaly detection model outperforms the state-of-the-art (SOTA) methods on both detection and segmentation precision on MVTec-3D AD dataset. Code is available at //github.com/nomewang/M3DM.

Recently, a considerable literature has grown up around the theme of Graph Convolutional Network (GCN). How to effectively leverage the rich structural information in complex graphs, such as knowledge graphs with heterogeneous types of entities and relations, is a primary open challenge in the field. Most GCN methods are either restricted to graphs with a homogeneous type of edges (e.g., citation links only), or focusing on representation learning for nodes only instead of jointly propagating and updating the embeddings of both nodes and edges for target-driven objectives. This paper addresses these limitations by proposing a novel framework, namely the Knowledge Embedding based Graph Convolutional Network (KE-GCN), which combines the power of GCNs in graph-based belief propagation and the strengths of advanced knowledge embedding (a.k.a. knowledge graph embedding) methods, and goes beyond. Our theoretical analysis shows that KE-GCN offers an elegant unification of several well-known GCN methods as specific cases, with a new perspective of graph convolution. Experimental results on benchmark datasets show the advantageous performance of KE-GCN over strong baseline methods in the tasks of knowledge graph alignment and entity classification.

Minimizing cross-entropy over the softmax scores of a linear map composed with a high-capacity encoder is arguably the most popular choice for training neural networks on supervised learning tasks. However, recent works show that one can directly optimize the encoder instead, to obtain equally (or even more) discriminative representations via a supervised variant of a contrastive objective. In this work, we address the question whether there are fundamental differences in the sought-for representation geometry in the output space of the encoder at minimal loss. Specifically, we prove, under mild assumptions, that both losses attain their minimum once the representations of each class collapse to the vertices of a regular simplex, inscribed in a hypersphere. We provide empirical evidence that this configuration is attained in practice and that reaching a close-to-optimal state typically indicates good generalization performance. Yet, the two losses show remarkably different optimization behavior. The number of iterations required to perfectly fit to data scales superlinearly with the amount of randomly flipped labels for the supervised contrastive loss. This is in contrast to the approximately linear scaling previously reported for networks trained with cross-entropy.

Knowledge graph (KG) embedding encodes the entities and relations from a KG into low-dimensional vector spaces to support various applications such as KG completion, question answering, and recommender systems. In real world, knowledge graphs (KGs) are dynamic and evolve over time with addition or deletion of triples. However, most existing models focus on embedding static KGs while neglecting dynamics. To adapt to the changes in a KG, these models need to be re-trained on the whole KG with a high time cost. In this paper, to tackle the aforementioned problem, we propose a new context-aware Dynamic Knowledge Graph Embedding (DKGE) method which supports the embedding learning in an online fashion. DKGE introduces two different representations (i.e., knowledge embedding and contextual element embedding) for each entity and each relation, in the joint modeling of entities and relations as well as their contexts, by employing two attentive graph convolutional networks, a gate strategy, and translation operations. This effectively helps limit the impacts of a KG update in certain regions, not in the entire graph, so that DKGE can rapidly acquire the updated KG embedding by a proposed online learning algorithm. Furthermore, DKGE can also learn KG embedding from scratch. Experiments on the tasks of link prediction and question answering in a dynamic environment demonstrate the effectiveness and efficiency of DKGE.

北京阿比特科技有限公司