Vision-Language Pretraining (VLP) and Foundation models have been the go-to recipe for achieving SoTA performance on general benchmarks. However, leveraging these powerful techniques for more complex vision-language tasks, such as cooking applications, with more structured input data, is still little investigated. In this work, we propose to leverage these techniques for structured-text based computational cuisine tasks. Our strategy, dubbed VLPCook (Structured Vision-Language Pretraining for Computational Cooking), first transforms existing image-text pairs to image and structured-text pairs. This allows to pretrain our VLPCook model using VLP objectives adapted to the strutured data of the resulting datasets, then finetuning it on downstream computational cooking tasks. During finetuning, we also enrich the visual encoder, leveraging pretrained foundation models (e.g. CLIP) to provide local and global textual context. VLPCook outperforms current SoTA by a significant margin (+3.3 Recall@1 absolute improvement) on the task of Cross-Modal Food Retrieval on the large Recipe1M dataset. Finally, we conduct further experiments on VLP to validate their importance, especially on the Recipe1M+ dataset. The code will be made publicly available.
Weakly supervised person search aims to perform joint pedestrian detection and re-identification (re-id) with only person bounding-box annotations. Recently, the idea of contrastive learning is initially applied to weakly supervised person search, where two common contrast strategies are memory-based contrast and intra-image contrast. We argue that current intra-image contrast is shallow, which suffers from spatial-level and occlusion-level variance. In this paper, we present a novel deep intra-image contrastive learning using a Siamese network. Two key modules are spatial-invariant contrast (SIC) and occlusion-invariant contrast (OIC). SIC performs many-to-one contrasts between two branches of Siamese network and dense prediction contrasts in one branch of Siamese network. With these many-to-one and dense contrasts, SIC tends to learn discriminative scale-invariant and location-invariant features to solve spatial-level variance. OIC enhances feature consistency with the masking strategy to learn occlusion-invariant features. Extensive experiments are performed on two person search datasets CUHK-SYSU and PRW, respectively. Our method achieves a state-of-the-art performance among weakly supervised one-step person search approaches. We hope that our simple intra-image contrastive learning can provide more paradigms on weakly supervised person search. The source code is available at \url{//github.com/jiabeiwangTJU/DICL}.
With the advance of language models, privacy protection is receiving more attention. Training data extraction is therefore of great importance, as it can serve as a potential tool to assess privacy leakage. However, due to the difficulty of this task, most of the existing methods are proof-of-concept and still not effective enough. In this paper, we investigate and benchmark tricks for improving training data extraction using a publicly available dataset. Because most existing extraction methods use a pipeline of generating-then-ranking, i.e., generating text candidates as potential training data and then ranking them based on specific criteria, our research focuses on the tricks for both text generation (e.g., sampling strategy) and text ranking (e.g., token-level criteria). The experimental results show that several previously overlooked tricks can be crucial to the success of training data extraction. Based on the GPT-Neo 1.3B evaluation results, our proposed tricks outperform the baseline by a large margin in most cases, providing a much stronger baseline for future research.
Language models (LMs) have demonstrated their capability in possessing commonsense knowledge of the physical world, a crucial aspect of performing tasks in everyday life. However, it remains unclear whether they have the capacity to generate grounded, executable plans for embodied tasks. This is a challenging task as LMs lack the ability to perceive the environment through vision and feedback from the physical environment. In this paper, we address this important research question and present the first investigation into the topic. Our novel problem formulation, named G-PlanET, inputs a high-level goal and a data table about objects in a specific environment, and then outputs a step-by-step actionable plan for a robotic agent to follow. To facilitate the study, we establish an evaluation protocol and design a dedicated metric, KAS, to assess the quality of the plans. Our experiments demonstrate that the use of tables for encoding the environment and an iterative decoding strategy can significantly enhance the LMs' ability in grounded planning. Our analysis also reveals interesting and non-trivial findings.
Deep learning technology has developed unprecedentedly in the last decade and has become the primary choice in many application domains. This progress is mainly attributed to a systematic collaboration in which rapidly growing computing resources encourage advanced algorithms to deal with massive data. However, it has gradually become challenging to handle the unlimited growth of data with limited computing power. To this end, diverse approaches are proposed to improve data processing efficiency. Dataset distillation, a dataset reduction method, addresses this problem by synthesizing a small typical dataset from substantial data and has attracted much attention from the deep learning community. Existing dataset distillation methods can be taxonomized into meta-learning and data matching frameworks according to whether they explicitly mimic the performance of target data. Although dataset distillation has shown surprising performance in compressing datasets, there are still several limitations such as distilling high-resolution data. This paper provides a holistic understanding of dataset distillation from multiple aspects, including distillation frameworks and algorithms, factorized dataset distillation, performance comparison, and applications. Finally, we discuss challenges and promising directions to further promote future studies on dataset distillation.
The recently proposed Vision transformers (ViTs) have shown very impressive empirical performance in various computer vision tasks, and they are viewed as an important type of foundation model. However, ViTs are typically constructed with large-scale sizes, which then severely hinder their potential deployment in many practical resources-constrained applications. To mitigate this challenging problem, structured pruning is a promising solution to compress model size and enable practical efficiency. However, unlike its current popularity for CNNs and RNNs, structured pruning for ViT models is little explored. In this paper, we propose GOHSP, a unified framework of Graph and Optimization-based Structured Pruning for ViT models. We first develop a graph-based ranking for measuring the importance of attention heads, and the extracted importance information is further integrated to an optimization-based procedure to impose the heterogeneous structured sparsity patterns on the ViT models. Experimental results show that our proposed GOHSP demonstrates excellent compression performance. On CIFAR-10 dataset, our approach can bring 40% parameters reduction with no accuracy loss for ViT-Small model. On ImageNet dataset, with 30% and 35% sparsity ratio for DeiT-Tiny and DeiT-Small models, our approach achieves 1.65% and 0.76% accuracy increase over the existing structured pruning methods, respectively.
Selecting a suitable training dataset is crucial for both general-domain (e.g., GPT-3) and domain-specific (e.g., Codex) language models (LMs). We formalize this data selection problem as selecting a subset of a large raw unlabeled dataset to match a desired target distribution, given some unlabeled target samples. Due to the large scale and dimensionality of the raw text data, existing methods use simple heuristics to select data that are similar to a high-quality reference corpus (e.g., Wikipedia), or leverage experts to manually curate data. Instead, we extend the classic importance resampling approach used in low-dimensions for LM data selection. Crucially, we work in a reduced feature space to make importance weight estimation tractable over the space of text. To determine an appropriate feature space, we first show that KL reduction, a data metric that measures the proximity between selected data and the target in a feature space, has high correlation with average accuracy on 8 downstream tasks (r=0.89) when computed with simple n-gram features. From this observation, we present Data Selection with Importance Resampling (DSIR), an efficient and scalable algorithm that estimates importance weights in a reduced feature space (e.g., n-gram features in our instantiation) and selects data with importance resampling according to these weights. When training general-domain models (target is Wikipedia + books), DSIR improves over random selection and heuristic filtering baselines by 2--2.5% on the GLUE benchmark. When performing continued pretraining towards a specific domain, DSIR performs comparably to expert curated data across 8 target distributions.
Multimodality Representation Learning, as a technique of learning to embed information from different modalities and their correlations, has achieved remarkable success on a variety of applications, such as Visual Question Answering (VQA), Natural Language for Visual Reasoning (NLVR), and Vision Language Retrieval (VLR). Among these applications, cross-modal interaction and complementary information from different modalities are crucial for advanced models to perform any multimodal task, e.g., understand, recognize, retrieve, or generate optimally. Researchers have proposed diverse methods to address these tasks. The different variants of transformer-based architectures performed extraordinarily on multiple modalities. This survey presents the comprehensive literature on the evolution and enhancement of deep learning multimodal architectures to deal with textual, visual and audio features for diverse cross-modal and modern multimodal tasks. This study summarizes the (i) recent task-specific deep learning methodologies, (ii) the pretraining types and multimodal pretraining objectives, (iii) from state-of-the-art pretrained multimodal approaches to unifying architectures, and (iv) multimodal task categories and possible future improvements that can be devised for better multimodal learning. Moreover, we prepare a dataset section for new researchers that covers most of the benchmarks for pretraining and finetuning. Finally, major challenges, gaps, and potential research topics are explored. A constantly-updated paperlist related to our survey is maintained at //github.com/marslanm/multimodality-representation-learning.
With the rise of powerful pre-trained vision-language models like CLIP, it becomes essential to investigate ways to adapt these models to downstream datasets. A recently proposed method named Context Optimization (CoOp) introduces the concept of prompt learning -- a recent trend in NLP -- to the vision domain for adapting pre-trained vision-language models. Specifically, CoOp turns context words in a prompt into a set of learnable vectors and, with only a few labeled images for learning, can achieve huge improvements over intensively-tuned manual prompts. In our study we identify a critical problem of CoOp: the learned context is not generalizable to wider unseen classes within the same dataset, suggesting that CoOp overfits base classes observed during training. To address the problem, we propose Conditional Context Optimization (CoCoOp), which extends CoOp by further learning a lightweight neural network to generate for each image an input-conditional token (vector). Compared to CoOp's static prompts, our dynamic prompts adapt to each instance and are thus less sensitive to class shift. Extensive experiments show that CoCoOp generalizes much better than CoOp to unseen classes, even showing promising transferability beyond a single dataset; and yields stronger domain generalization performance as well. Code is available at //github.com/KaiyangZhou/CoOp.
Recently pre-trained language representation models such as BERT have shown great success when fine-tuned on downstream tasks including information retrieval (IR). However, pre-training objectives tailored for ad-hoc retrieval have not been well explored. In this paper, we propose Pre-training with Representative wOrds Prediction (PROP) for ad-hoc retrieval. PROP is inspired by the classical statistical language model for IR, specifically the query likelihood model, which assumes that the query is generated as the piece of text representative of the "ideal" document. Based on this idea, we construct the representative words prediction (ROP) task for pre-training. Given an input document, we sample a pair of word sets according to the document language model, where the set with higher likelihood is deemed as more representative of the document. We then pre-train the Transformer model to predict the pairwise preference between the two word sets, jointly with the Masked Language Model (MLM) objective. By further fine-tuning on a variety of representative downstream ad-hoc retrieval tasks, PROP achieves significant improvements over baselines without pre-training or with other pre-training methods. We also show that PROP can achieve exciting performance under both the zero- and low-resource IR settings. The code and pre-trained models are available at //github.com/Albert-Ma/PROP.
Most object recognition approaches predominantly focus on learning discriminative visual patterns while overlooking the holistic object structure. Though important, structure modeling usually requires significant manual annotations and therefore is labor-intensive. In this paper, we propose to "look into object" (explicitly yet intrinsically model the object structure) through incorporating self-supervisions into the traditional framework. We show the recognition backbone can be substantially enhanced for more robust representation learning, without any cost of extra annotation and inference speed. Specifically, we first propose an object-extent learning module for localizing the object according to the visual patterns shared among the instances in the same category. We then design a spatial context learning module for modeling the internal structures of the object, through predicting the relative positions within the extent. These two modules can be easily plugged into any backbone networks during training and detached at inference time. Extensive experiments show that our look-into-object approach (LIO) achieves large performance gain on a number of benchmarks, including generic object recognition (ImageNet) and fine-grained object recognition tasks (CUB, Cars, Aircraft). We also show that this learning paradigm is highly generalizable to other tasks such as object detection and segmentation (MS COCO). Project page: //github.com/JDAI-CV/LIO.