Image enhancement is a common technique used to mitigate issues such as severe noise, low brightness, low contrast, and color deviation in low-light images. However, providing an optimal high-light image as a reference for low-light image enhancement tasks is impossible, which makes the learning process more difficult than other image processing tasks. As a result, although several low-light image enhancement methods have been proposed, most of them are either too complex or insufficient in addressing all the issues in low-light images. In this paper, to make the learning easier in low-light image enhancement, we introduce FLW-Net (Fast and LightWeight Network) and two relative loss functions. Specifically, we first recognize the challenges of the need for a large receptive field to obtain global contrast and the lack of an absolute reference, which limits the simplification of network structures in this task. Then, we propose an efficient global feature information extraction component and two loss functions based on relative information to overcome these challenges. Finally, we conducted comparative experiments to demonstrate the effectiveness of the proposed method, and the results confirm that the proposed method can significantly reduce the complexity of supervised low-light image enhancement networks while improving processing effect. The code is available at \url{//github.com/hitzhangyu/FLW-Net}.
Knowledge distillation (KD) is used to enhance automatic speaker verification performance by ensuring consistency between large teacher networks and lightweight student networks at the embedding level or label level. However, the conventional label-level KD overlooks the significant knowledge from non-target speakers, particularly their classification probabilities, which can be crucial for automatic speaker verification. In this paper, we first demonstrate that leveraging a larger number of training non-target speakers improves the performance of automatic speaker verification models. Inspired by this finding about the importance of non-target speakers' knowledge, we modified the conventional label-level KD by disentangling and emphasizing the classification probabilities of non-target speakers during knowledge distillation. The proposed method is applied to three different student model architectures and achieves an average of 13.67% improvement in EER on the VoxCeleb dataset compared to embedding-level and conventional label-level KD methods.
Human speech can be characterized by different components, including semantic content, speaker identity and prosodic information. Significant progress has been made in disentangling representations for semantic content and speaker identity in Automatic Speech Recognition (ASR) and speaker verification tasks respectively. However, it is still an open challenging research question to extract prosodic information because of the intrinsic association of different attributes, such as timbre and rhythm, and because of the need for supervised training schemes to achieve robust large-scale and speaker-independent ASR. The aim of this paper is to address the disentanglement of emotional prosody from speech based on unsupervised reconstruction. Specifically, we identify, design, implement and integrate three crucial components in our proposed speech reconstruction model Prosody2Vec: (1) a unit encoder that transforms speech signals into discrete units for semantic content, (2) a pretrained speaker verification model to generate speaker identity embeddings, and (3) a trainable prosody encoder to learn prosody representations. We first pretrain the Prosody2Vec representations on unlabelled emotional speech corpora, then fine-tune the model on specific datasets to perform Speech Emotion Recognition (SER) and Emotional Voice Conversion (EVC) tasks. Both objective (weighted and unweighted accuracies) and subjective (mean opinion score) evaluations on the EVC task suggest that Prosody2Vec effectively captures general prosodic features that can be smoothly transferred to other emotional speech. In addition, our SER experiments on the IEMOCAP dataset reveal that the prosody features learned by Prosody2Vec are complementary and beneficial for the performance of widely used speech pretraining models and surpass the state-of-the-art methods when combining Prosody2Vec with HuBERT representations.
Despite having the same basic prophet inequality setup and model of loss aversion, conclusions in our multi-dimensional model differs considerably from the one-dimensional model of Kleinberg et al. For example, Kleinberg et al. gives a tight closed-form on the competitive ratio that an online decision-maker can achieve as a function of $\lambda$, for any $\lambda \geq 0$. In our multi-dimensional model, there is a sharp phase transition: if $k$ denotes the number of dimensions, then when $\lambda \cdot (k-1) \geq 1$, no non-trivial competitive ratio is possible. On the other hand, when $\lambda \cdot (k-1) < 1$, we give a tight bound on the achievable competitive ratio (similar to Kleinberg et al.). As another example, Kleinberg et al. uncovers an exponential improvement in their competitive ratio for the random-order vs. worst-case prophet inequality problem. In our model with $k\geq 2$ dimensions, the gap is at most a constant-factor. We uncover several additional key differences in the multi- and single-dimensional models.
This paper presents a novel approach to fall prediction for bipedal robots, specifically targeting the detection of potential falls while standing caused by abrupt, incipient, and intermittent faults. Leveraging a 1D convolutional neural network (CNN), our method aims to maximize lead time for fall prediction while minimizing false positive rates. The proposed algorithm uniquely integrates the detection of various fault types and estimates the lead time for potential falls. Our contributions include the development of an algorithm capable of detecting abrupt, incipient, and intermittent faults in full-sized robots, its implementation using both simulation and hardware data for a humanoid robot, and a method for estimating lead time. Evaluation metrics, including false positive rate, lead time, and response time, demonstrate the efficacy of our approach. Particularly, our model achieves impressive lead times and response times across different fault scenarios with a false positive rate of 0. The findings of this study hold significant implications for enhancing the safety and reliability of bipedal robotic systems.
Pitch estimation is an essential step of many speech processing algorithms, including speech coding, synthesis, and enhancement. Recently, pitch estimators based on deep neural networks (DNNs) have have been outperforming well-established DSP-based techniques. Unfortunately, these new estimators can be impractical to deploy in real-time systems, both because of their relatively high complexity, and the fact that some require significant lookahead. We show that a hybrid estimator using a small deep neural network (DNN) with traditional DSP-based features can match or exceed the performance of pure DNN-based models, with a complexity and algorithmic delay comparable to traditional DSP-based algorithms. We further demonstrate that this hybrid approach can provide benefits for a neural vocoding task.
To alleviate the expensive human labeling, semi-supervised semantic segmentation employs a few labeled images and an abundant of unlabeled images to predict the pixel-level label map with the same size. Previous methods often adopt co-training using two convolutional networks with the same architecture but different initialization, which fails to capture the sufficiently diverse features. This motivates us to use tri-training and develop the triple-view encoder to utilize the encoders with different architectures to derive diverse features, and exploit the knowledge distillation skill to learn the complementary semantics among these encoders. Moreover, existing methods simply concatenate the features from both encoder and decoder, resulting in redundant features that require large memory cost. This inspires us to devise a dual-frequency decoder that selects those important features by projecting the features from the spatial domain to the frequency domain, where the dual-frequency channel attention mechanism is introduced to model the feature importance. Therefore, we propose a Triple-view Knowledge Distillation framework, termed TriKD, for semi-supervised semantic segmentation, including the triple-view encoder and the dual-frequency decoder. Extensive experiments were conducted on two benchmarks, \ie, Pascal VOC 2012 and Cityscapes, whose results verify the superiority of the proposed method with a good tradeoff between precision and inference speed.
In surveillance, accurately recognizing license plates is hindered by their often low quality and small dimensions, compromising recognition precision. Despite advancements in AI-based image super-resolution, methods like Convolutional Neural Networks (CNNs) and Generative Adversarial Networks (GANs) still fall short in enhancing license plate images. This study leverages the cutting-edge diffusion model, which has consistently outperformed other deep learning techniques in image restoration. By training this model using a curated dataset of Saudi license plates, both in low and high resolutions, we discovered the diffusion model's superior efficacy. The method achieves a 12.55\% and 37.32% improvement in Peak Signal-to-Noise Ratio (PSNR) over SwinIR and ESRGAN, respectively. Moreover, our method surpasses these techniques in terms of Structural Similarity Index (SSIM), registering a 4.89% and 17.66% improvement over SwinIR and ESRGAN, respectively. Furthermore, 92% of human evaluators preferred our images over those from other algorithms. In essence, this research presents a pioneering solution for license plate super-resolution, with tangible potential for surveillance systems.
Video captioning is a challenging task that requires a deep understanding of visual scenes. State-of-the-art methods generate captions using either scene-level or object-level information but without explicitly modeling object interactions. Thus, they often fail to make visually grounded predictions, and are sensitive to spurious correlations. In this paper, we propose a novel spatio-temporal graph model for video captioning that exploits object interactions in space and time. Our model builds interpretable links and is able to provide explicit visual grounding. To avoid unstable performance caused by the variable number of objects, we further propose an object-aware knowledge distillation mechanism, in which local object information is used to regularize global scene features. We demonstrate the efficacy of our approach through extensive experiments on two benchmarks, showing our approach yields competitive performance with interpretable predictions.
Incompleteness is a common problem for existing knowledge graphs (KGs), and the completion of KG which aims to predict links between entities is challenging. Most existing KG completion methods only consider the direct relation between nodes and ignore the relation paths which contain useful information for link prediction. Recently, a few methods take relation paths into consideration but pay less attention to the order of relations in paths which is important for reasoning. In addition, these path-based models always ignore nonlinear contributions of path features for link prediction. To solve these problems, we propose a novel KG completion method named OPTransE. Instead of embedding both entities of a relation into the same latent space as in previous methods, we project the head entity and the tail entity of each relation into different spaces to guarantee the order of relations in the path. Meanwhile, we adopt a pooling strategy to extract nonlinear and complex features of different paths to further improve the performance of link prediction. Experimental results on two benchmark datasets show that the proposed model OPTransE performs better than state-of-the-art methods.
Aspect level sentiment classification aims to identify the sentiment expressed towards an aspect given a context sentence. Previous neural network based methods largely ignore the syntax structure in one sentence. In this paper, we propose a novel target-dependent graph attention network (TD-GAT) for aspect level sentiment classification, which explicitly utilizes the dependency relationship among words. Using the dependency graph, it propagates sentiment features directly from the syntactic context of an aspect target. In our experiments, we show our method outperforms multiple baselines with GloVe embeddings. We also demonstrate that using BERT representations further substantially boosts the performance.