亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Generative text-to-image models have gained great popularity among the public for their powerful capability to generate high-quality images based on natural language prompts. However, developing effective prompts for desired images can be challenging due to the complexity and ambiguity of natural language. This research proposes PromptMagician, a visual analysis system that helps users explore the image results and refine the input prompts. The backbone of our system is a prompt recommendation model that takes user prompts as input, retrieves similar prompt-image pairs from DiffusionDB, and identifies special (important and relevant) prompt keywords. To facilitate interactive prompt refinement, PromptMagician introduces a multi-level visualization for the cross-modal embedding of the retrieved images and recommended keywords, and supports users in specifying multiple criteria for personalized exploration. Two usage scenarios, a user study, and expert interviews demonstrate the effectiveness and usability of our system, suggesting it facilitates prompt engineering and improves the creativity support of the generative text-to-image model.

相關內容

Large Language Models have not yet been broadly adapted for the analysis of scientific datasets due in part to the unique difficulties of tokenizing numbers. We propose xVal, a numerical encoding scheme that represents any real number using just a single token. xVal represents a given real number by scaling a dedicated embedding vector by the number value. Combined with a modified number-inference approach, this strategy renders the model end-to-end continuous when considered as a map from the numbers of the input string to those of the output string. This leads to an inductive bias that is generally more suitable for applications in scientific domains. We empirically evaluate our proposal on a number of synthetic and real-world datasets. Compared with existing number encoding schemes, we find that xVal is more token-efficient and demonstrates improved generalization.

Visual language reasoning requires a system to extract text or numbers from information-dense images like charts or plots and perform logical or arithmetic reasoning to arrive at an answer. To tackle this task, existing work relies on either (1) an end-to-end vision-language model trained on a large amount of data, or (2) a two-stage pipeline where a captioning model converts the image into text that is further read by another large language model to deduce the answer. However, the former approach forces the model to answer a complex question with one single step, and the latter approach is prone to inaccurate or distracting information in the converted text that can confuse the language model. In this work, we propose a dual-system for multi-step multimodal reasoning, which consists of a "System-1" step for visual information extraction and a "System-2" step for deliberate reasoning. Given an input, System-2 breaks down the question into atomic sub-steps, each guiding System-1 to extract the information required for reasoning from the image. Experiments on chart and plot datasets show that our method with a pre-trained System-2 module performs competitively compared to prior work on in- and out-of-distribution data. By fine-tuning the System-2 module (LLaMA-2 70B) on only a small amount of data on multi-step reasoning, the accuracy of our method is further improved and surpasses the best fully-supervised end-to-end approach by 5.7% and a pipeline approach with FlanPaLM (540B) by 7.5% on a challenging dataset with human-authored questions.

Text-to-image generative models based on latent diffusion models (LDM) have demonstrated their outstanding ability in generating high-quality and high-resolution images according to language prompt. Based on these powerful latent diffusion models, various fine-tuning methods have been proposed to achieve the personalization of text-to-image diffusion models such as artistic style adaptation and human face transfer. However, the unauthorized usage of data for model personalization has emerged as a prevalent concern in relation to copyright violations. For example, a malicious user may use the fine-tuning technique to generate images which mimic the style of a painter without his/her permission. In light of this concern, we have proposed FT-Shield, a watermarking approach specifically designed for the fine-tuning of text-to-image diffusion models to aid in detecting instances of infringement. We develop a novel algorithm for the generation of the watermark to ensure that the watermark on the training images can be quickly and accurately transferred to the generated images of text-to-image diffusion models. A watermark will be detected on an image by a binary watermark detector if the image is generated by a model that has been fine-tuned using the protected watermarked images. Comprehensive experiments were conducted to validate the effectiveness of FT-Shield.

The intersection of vision and language is of major interest due to the increased focus on seamless integration between recognition and reasoning. Scene graphs (SGs) have emerged as a useful tool for multimodal image analysis, showing impressive performance in tasks such as Visual Question Answering (VQA). In this work, we demonstrate that despite the effectiveness of scene graphs in VQA tasks, current methods that utilize idealized annotated scene graphs struggle to generalize when using predicted scene graphs extracted from images. To address this issue, we introduce the SelfGraphVQA framework. Our approach extracts a scene graph from an input image using a pre-trained scene graph generator and employs semantically-preserving augmentation with self-supervised techniques. This method improves the utilization of graph representations in VQA tasks by circumventing the need for costly and potentially biased annotated data. By creating alternative views of the extracted graphs through image augmentations, we can learn joint embeddings by optimizing the informational content in their representations using an un-normalized contrastive approach. As we work with SGs, we experiment with three distinct maximization strategies: node-wise, graph-wise, and permutation-equivariant regularization. We empirically showcase the effectiveness of the extracted scene graph for VQA and demonstrate that these approaches enhance overall performance by highlighting the significance of visual information. This offers a more practical solution for VQA tasks that rely on SGs for complex reasoning questions.

Vision Transformers (ViTs) have emerged as powerful models in the field of computer vision, delivering superior performance across various vision tasks. However, the high computational complexity poses a significant barrier to their practical applications in real-world scenarios. Motivated by the fact that not all tokens contribute equally to the final predictions and fewer tokens bring less computational cost, reducing redundant tokens has become a prevailing paradigm for accelerating vision transformers. However, we argue that it is not optimal to either only reduce inattentive redundancy by token pruning, or only reduce duplicative redundancy by token merging. To this end, in this paper we propose a novel acceleration framework, namely token Pruning & Pooling Transformers (PPT), to adaptively tackle these two types of redundancy in different layers. By heuristically integrating both token pruning and token pooling techniques in ViTs without additional trainable parameters, PPT effectively reduces the model complexity while maintaining its predictive accuracy. For example, PPT reduces over 37% FLOPs and improves the throughput by over 45% for DeiT-S without any accuracy drop on the ImageNet dataset.

Computer-based decision systems are widely used to automate decisions in many aspects of everyday life, which include sensitive areas like hiring, loaning and even criminal sentencing. A decision pipeline heavily relies on large volumes of historical real-world data for training its models. However, historical training data often contains gender, racial or other biases which are propagated to the trained models influencing computer-based decisions. In this work, we propose a robust methodology that guarantees the removal of unwanted biases while maximally preserving classification utility. Our approach can always achieve this in a model-independent way by deriving from real-world data the asymptotic dataset that uniquely encodes demographic parity and realism. As a proof-of-principle, we deduce from public census records such an asymptotic dataset from which synthetic samples can be generated to train well-established classifiers. Benchmarking the generalization capability of these classifiers trained on our synthetic data, we confirm the absence of any explicit or implicit bias in the computer-aided decision.

Convolutional neural networks have made significant progresses in edge detection by progressively exploring the context and semantic features. However, local details are gradually suppressed with the enlarging of receptive fields. Recently, vision transformer has shown excellent capability in capturing long-range dependencies. Inspired by this, we propose a novel transformer-based edge detector, \emph{Edge Detection TransformER (EDTER)}, to extract clear and crisp object boundaries and meaningful edges by exploiting the full image context information and detailed local cues simultaneously. EDTER works in two stages. In Stage I, a global transformer encoder is used to capture long-range global context on coarse-grained image patches. Then in Stage II, a local transformer encoder works on fine-grained patches to excavate the short-range local cues. Each transformer encoder is followed by an elaborately designed Bi-directional Multi-Level Aggregation decoder to achieve high-resolution features. Finally, the global context and local cues are combined by a Feature Fusion Module and fed into a decision head for edge prediction. Extensive experiments on BSDS500, NYUDv2, and Multicue demonstrate the superiority of EDTER in comparison with state-of-the-arts.

Generative commonsense reasoning which aims to empower machines to generate sentences with the capacity of reasoning over a set of concepts is a critical bottleneck for text generation. Even the state-of-the-art pre-trained language generation models struggle at this task and often produce implausible and anomalous sentences. One reason is that they rarely consider incorporating the knowledge graph which can provide rich relational information among the commonsense concepts. To promote the ability of commonsense reasoning for text generation, we propose a novel knowledge graph augmented pre-trained language generation model KG-BART, which encompasses the complex relations of concepts through the knowledge graph and produces more logical and natural sentences as output. Moreover, KG-BART can leverage the graph attention to aggregate the rich concept semantics that enhances the model generalization on unseen concept sets. Experiments on benchmark CommonGen dataset verify the effectiveness of our proposed approach by comparing with several strong pre-trained language generation models, particularly KG-BART outperforms BART by 5.80, 4.60, in terms of BLEU-3, 4. Moreover, we also show that the generated context by our model can work as background scenarios to benefit downstream commonsense QA tasks.

With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves better performance than pretraining approaches based on autoregressive language modeling. However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into pretraining. Empirically, XLNet outperforms BERT on 20 tasks, often by a large margin, and achieves state-of-the-art results on 18 tasks including question answering, natural language inference, sentiment analysis, and document ranking.

Distant supervision can effectively label data for relation extraction, but suffers from the noise labeling problem. Recent works mainly perform soft bag-level noise reduction strategies to find the relatively better samples in a sentence bag, which is suboptimal compared with making a hard decision of false positive samples in sentence level. In this paper, we introduce an adversarial learning framework, which we named DSGAN, to learn a sentence-level true-positive generator. Inspired by Generative Adversarial Networks, we regard the positive samples generated by the generator as the negative samples to train the discriminator. The optimal generator is obtained until the discrimination ability of the discriminator has the greatest decline. We adopt the generator to filter distant supervision training dataset and redistribute the false positive instances into the negative set, in which way to provide a cleaned dataset for relation classification. The experimental results show that the proposed strategy significantly improves the performance of distant supervision relation extraction comparing to state-of-the-art systems.

北京阿比特科技有限公司