Deep neural networks (DNNs) are instrumental in realizing complex perception systems. As many of these applications are safety-critical by design, engineering rigor is required to ensure that the functional insufficiency of the DNN-based perception is not the source of harm. In addition to conventional static verification and testing techniques employed during the design phase, there is a need for runtime verification techniques that can detect critical events, diagnose issues, and even enforce requirements. This tutorial aims to provide readers with a glimpse of techniques proposed in the literature. We start with classical methods proposed in the machine learning community, then highlight a few techniques proposed by the formal methods community. While we surely can observe similarities in the design of monitors, how the decision boundaries are created vary between the two communities. We conclude by highlighting the need to rigorously design monitors, where data availability outside the operational domain plays an important role.
Several methods have been proposed recently to learn neural network (NN) controllers for autonomous agents, with unknown and stochastic dynamics, tasked with complex missions captured by Linear Temporal Logic (LTL). Due to the sample-inefficiency of the majority of these works, compositional learning methods have been proposed decomposing the LTL specification into smaller sub-tasks. Then, separate controllers are learned and composed to satisfy the original task. A key challenge within these approaches is that they often lack safety guarantees or the provided guarantees are impractical. This paper aims to address this challenge. Particularly, we consider autonomous systems with unknown and stochastic dynamics and LTL-encoded tasks. We assume that the system is equipped with a finite set of base skills modeled by trained NN feedback controllers. Our goal is to check if there exists a temporal composition of the trained NN controllers - and if so, to compute it - that will yield a composite system behavior that satisfies the assigned LTL task with probability one. We propose a new approach that relies on a novel integration of automata theory and data-driven reachability analysis tools for NN-controlled stochastic systems. The resulting neuro-symbolic controller allows the agent to generate safe behaviors for unseen complex temporal logic tasks in a zero-shot fashion by leveraging its base skills. We show correctness of the proposed method and we provide conditions under which it is complete. To the best of our knowledge, this is the first work that designs verified temporal compositions of NN controllers for unknown and stochastic systems. Finally, we provide extensive numerical simulations and hardware experiments on robot navigation tasks to demonstrate the proposed method.
Modern applications are increasingly driven by Machine Learning (ML) models whose non-deterministic behavior is affecting the entire application life cycle from design to operation. The pervasive adoption of ML is urgently calling for approaches that guarantee a stable non-functional behavior of ML-based applications over time and across model changes. To this aim, non-functional properties of ML models, such as privacy, confidentiality, fairness, and explainability, must be monitored, verified, and maintained. This need is even more pressing when modern applications operate in the edge-cloud continuum, increasing their complexity and dynamicity. Existing approaches mostly focus on i) implementing classifier selection solutions according to the functional behavior of ML models, ii) finding new algorithmic solutions to this need, such as continuous re-training. In this paper, we propose a multi-model approach built on dynamic classifier selection, where multiple ML models showing similar non-functional properties are made available to the application and one model is selected over time according to (dynamic and unpredictable) contextual changes. Our solution goes beyond the state of the art by providing an architectural and methodological approach that continuously guarantees a stable non-functional behavior of ML-based applications, is applicable to different ML models, and is driven by non-functional properties assessed on the models themselves. It consists of a two-step process working during application operation, where model assessment verifies non-functional properties of ML models trained and selected at development time, and model substitution guarantees a continuous and stable support of non-functional properties. We experimentally evaluate our solution in a real-world scenario focusing on non-functional property fairness.
Generating safe behaviors for autonomous systems is important as they continue to be deployed in the real world, especially around people. In this work, we focus on developing a novel safe controller for systems where there are multiple sources of uncertainty. We formulate a novel multimodal safe control method, called the Multimodal Safe Set Algorithm (MMSSA) for the case where the agent has uncertainty over which discrete mode the system is in, and each mode itself contains additional uncertainty. To our knowledge, this is the first energy-function-based safe control method applied to systems with multimodal uncertainty. We apply our controller to a simulated human-robot interaction where the robot is uncertain of the human's true intention and each potential intention has its own additional uncertainty associated with it, since the human is not a perfectly rational actor. We compare our proposed safe controller to existing safe control methods and find that it does not impede the system performance (i.e. efficiency) while also improving the safety of the system.
As large language models (LLMs) permeate more and more applications, an assessment of their associated security risks becomes increasingly necessary. The potential for exploitation by malicious actors, ranging from disinformation to data breaches and reputation damage, is substantial. This paper addresses a gap in current research by focusing on the security risks posed by LLMs, which extends beyond the widely covered ethical and societal implications. Our work proposes a taxonomy of security risks along the user-model communication pipeline, explicitly focusing on prompt-based attacks on LLMs. We categorize the attacks by target and attack type within a prompt-based interaction scheme. The taxonomy is reinforced with specific attack examples to showcase the real-world impact of these risks. Through this taxonomy, we aim to inform the development of robust and secure LLM applications, enhancing their safety and trustworthiness.
Probabilistic breadth-first traversals (BPTs) are used in many network science and graph machine learning applications. In this paper, we are motivated by the application of BPTs in stochastic diffusion-based graph problems such as influence maximization. These applications heavily rely on BPTs to implement a Monte-Carlo sampling step for their approximations. Given the large sampling complexity, stochasticity of the diffusion process, and the inherent irregularity in real-world graph topologies, efficiently parallelizing these BPTs remains significantly challenging. In this paper, we present a new algorithm to fuse massive number of concurrently executing BPTs with random starts on the input graph. Our algorithm is designed to fuse BPTs by combining separate traversals into a unified frontier on distributed multi-GPU systems. To show the general applicability of the fused BPT technique, we have incorporated it into two state-of-the-art influence maximization parallel implementations (gIM and Ripples). Our experiments on up to 4K nodes of the OLCF Frontier supercomputer ($32,768$ GPUs and $196$K CPU cores) show strong scaling behavior, and that fused BPTs can improve the performance of these implementations up to 34$\times$ (for gIM) and ~360$\times$ (for Ripples).
This manuscript portrays optimization as a process. In many practical applications the environment is so complex that it is infeasible to lay out a comprehensive theoretical model and use classical algorithmic theory and mathematical optimization. It is necessary as well as beneficial to take a robust approach, by applying an optimization method that learns as one goes along, learning from experience as more aspects of the problem are observed. This view of optimization as a process has become prominent in varied fields and has led to some spectacular success in modeling and systems that are now part of our daily lives.
Graph neural networks (GNNs) have been proven to be effective in various network-related tasks. Most existing GNNs usually exploit the low-frequency signals of node features, which gives rise to one fundamental question: is the low-frequency information all we need in the real world applications? In this paper, we first present an experimental investigation assessing the roles of low-frequency and high-frequency signals, where the results clearly show that exploring low-frequency signal only is distant from learning an effective node representation in different scenarios. How can we adaptively learn more information beyond low-frequency information in GNNs? A well-informed answer can help GNNs enhance the adaptability. We tackle this challenge and propose a novel Frequency Adaptation Graph Convolutional Networks (FAGCN) with a self-gating mechanism, which can adaptively integrate different signals in the process of message passing. For a deeper understanding, we theoretically analyze the roles of low-frequency signals and high-frequency signals on learning node representations, which further explains why FAGCN can perform well on different types of networks. Extensive experiments on six real-world networks validate that FAGCN not only alleviates the over-smoothing problem, but also has advantages over the state-of-the-arts.
Knowledge graphs (KGs) serve as useful resources for various natural language processing applications. Previous KG completion approaches require a large number of training instances (i.e., head-tail entity pairs) for every relation. The real case is that for most of the relations, very few entity pairs are available. Existing work of one-shot learning limits method generalizability for few-shot scenarios and does not fully use the supervisory information; however, few-shot KG completion has not been well studied yet. In this work, we propose a novel few-shot relation learning model (FSRL) that aims at discovering facts of new relations with few-shot references. FSRL can effectively capture knowledge from heterogeneous graph structure, aggregate representations of few-shot references, and match similar entity pairs of reference set for every relation. Extensive experiments on two public datasets demonstrate that FSRL outperforms the state-of-the-art.
Learning latent representations of nodes in graphs is an important and ubiquitous task with widespread applications such as link prediction, node classification, and graph visualization. Previous methods on graph representation learning mainly focus on static graphs, however, many real-world graphs are dynamic and evolve over time. In this paper, we present Dynamic Self-Attention Network (DySAT), a novel neural architecture that operates on dynamic graphs and learns node representations that capture both structural properties and temporal evolutionary patterns. Specifically, DySAT computes node representations by jointly employing self-attention layers along two dimensions: structural neighborhood and temporal dynamics. We conduct link prediction experiments on two classes of graphs: communication networks and bipartite rating networks. Our experimental results show that DySAT has a significant performance gain over several different state-of-the-art graph embedding baselines.
Deep neural network architectures have traditionally been designed and explored with human expertise in a long-lasting trial-and-error process. This process requires huge amount of time, expertise, and resources. To address this tedious problem, we propose a novel algorithm to optimally find hyperparameters of a deep network architecture automatically. We specifically focus on designing neural architectures for medical image segmentation task. Our proposed method is based on a policy gradient reinforcement learning for which the reward function is assigned a segmentation evaluation utility (i.e., dice index). We show the efficacy of the proposed method with its low computational cost in comparison with the state-of-the-art medical image segmentation networks. We also present a new architecture design, a densely connected encoder-decoder CNN, as a strong baseline architecture to apply the proposed hyperparameter search algorithm. We apply the proposed algorithm to each layer of the baseline architectures. As an application, we train the proposed system on cine cardiac MR images from Automated Cardiac Diagnosis Challenge (ACDC) MICCAI 2017. Starting from a baseline segmentation architecture, the resulting network architecture obtains the state-of-the-art results in accuracy without performing any trial-and-error based architecture design approaches or close supervision of the hyperparameters changes.